mirror of
https://github.com/github/codeql.git
synced 2025-12-17 01:03:14 +01:00
Merge pull request #13863 from aschackmull/dataflow/pack4
Dataflow: Move the shared library to a properly shared qlpack.
This commit is contained in:
@@ -1,24 +1,4 @@
|
||||
{
|
||||
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift": [
|
||||
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlow.qll",
|
||||
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlow.qll",
|
||||
"cpp/ql/lib/semmle/code/cpp/ir/dataflow/internal/DataFlow.qll",
|
||||
"csharp/ql/lib/semmle/code/csharp/dataflow/internal/DataFlow.qll",
|
||||
"go/ql/lib/semmle/go/dataflow/internal/DataFlow.qll",
|
||||
"python/ql/lib/semmle/python/dataflow/new/internal/DataFlow.qll",
|
||||
"ruby/ql/lib/codeql/ruby/dataflow/internal/DataFlow.qll",
|
||||
"swift/ql/lib/codeql/swift/dataflow/internal/DataFlow.qll"
|
||||
],
|
||||
"DataFlowImpl Java/C++/C#/Go/Python/Ruby/Swift": [
|
||||
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl.qll",
|
||||
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlowImpl.qll",
|
||||
"cpp/ql/lib/semmle/code/cpp/ir/dataflow/internal/DataFlowImpl.qll",
|
||||
"csharp/ql/lib/semmle/code/csharp/dataflow/internal/DataFlowImpl.qll",
|
||||
"go/ql/lib/semmle/go/dataflow/internal/DataFlowImpl.qll",
|
||||
"python/ql/lib/semmle/python/dataflow/new/internal/DataFlowImpl.qll",
|
||||
"ruby/ql/lib/codeql/ruby/dataflow/internal/DataFlowImpl.qll",
|
||||
"swift/ql/lib/codeql/swift/dataflow/internal/DataFlowImpl.qll"
|
||||
],
|
||||
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift Legacy Configuration": [
|
||||
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl1.qll",
|
||||
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl2.qll",
|
||||
@@ -53,16 +33,6 @@
|
||||
"ruby/ql/lib/codeql/ruby/dataflow/internal/DataFlowImplForPathname.qll",
|
||||
"swift/ql/lib/codeql/swift/dataflow/internal/DataFlowImpl1.qll"
|
||||
],
|
||||
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift Common": [
|
||||
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImplCommon.qll",
|
||||
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlowImplCommon.qll",
|
||||
"cpp/ql/lib/semmle/code/cpp/ir/dataflow/internal/DataFlowImplCommon.qll",
|
||||
"csharp/ql/lib/semmle/code/csharp/dataflow/internal/DataFlowImplCommon.qll",
|
||||
"go/ql/lib/semmle/go/dataflow/internal/DataFlowImplCommon.qll",
|
||||
"python/ql/lib/semmle/python/dataflow/new/internal/DataFlowImplCommon.qll",
|
||||
"ruby/ql/lib/codeql/ruby/dataflow/internal/DataFlowImplCommon.qll",
|
||||
"swift/ql/lib/codeql/swift/dataflow/internal/DataFlowImplCommon.qll"
|
||||
],
|
||||
"TaintTracking Java/C++/C#/Go/Python/Ruby/Swift": [
|
||||
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/tainttracking1/TaintTracking.qll",
|
||||
"cpp/ql/lib/semmle/code/cpp/ir/dataflow/internal/tainttracking1/TaintTracking.qll",
|
||||
|
||||
@@ -6,6 +6,7 @@ extractor: cpp
|
||||
library: true
|
||||
upgrades: upgrades
|
||||
dependencies:
|
||||
codeql/dataflow: ${workspace}
|
||||
codeql/ssa: ${workspace}
|
||||
codeql/tutorial: ${workspace}
|
||||
codeql/util: ${workspace}
|
||||
|
||||
@@ -26,6 +26,8 @@ import cpp
|
||||
* global (inter-procedural) data flow analyses.
|
||||
*/
|
||||
deprecated module DataFlow {
|
||||
import semmle.code.cpp.dataflow.internal.DataFlow
|
||||
private import semmle.code.cpp.dataflow.internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<CppOldDataFlow>
|
||||
import semmle.code.cpp.dataflow.internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -5,8 +5,8 @@ private import DataFlowUtil
|
||||
/**
|
||||
* Gets a function that might be called by `call`.
|
||||
*/
|
||||
Function viableCallable(Call call) {
|
||||
result = call.getTarget()
|
||||
Function viableCallable(DataFlowCall call) {
|
||||
result = call.(Call).getTarget()
|
||||
or
|
||||
// If the target of the call does not have a body in the snapshot, it might
|
||||
// be because the target is just a header declaration, and the real target
|
||||
@@ -58,13 +58,13 @@ private predicate functionSignature(Function f, string qualifiedName, int nparam
|
||||
* Holds if the set of viable implementations that can be called by `call`
|
||||
* might be improved by knowing the call context.
|
||||
*/
|
||||
predicate mayBenefitFromCallContext(Call call, Function f) { none() }
|
||||
predicate mayBenefitFromCallContext(DataFlowCall call, Function f) { none() }
|
||||
|
||||
/**
|
||||
* Gets a viable dispatch target of `call` in the context `ctx`. This is
|
||||
* restricted to those `call`s for which a context might make a difference.
|
||||
*/
|
||||
Function viableImplInCallContext(Call call, Call ctx) { none() }
|
||||
Function viableImplInCallContext(DataFlowCall call, DataFlowCall ctx) { none() }
|
||||
|
||||
/** A parameter position represented by an integer. */
|
||||
class ParameterPosition extends int {
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,9 @@
|
||||
/**
|
||||
* Provides C++-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
|
||||
module Private {
|
||||
import DataFlowPrivate
|
||||
import DataFlowDispatch
|
||||
@@ -9,3 +12,10 @@ module Private {
|
||||
module Public {
|
||||
import DataFlowUtil
|
||||
}
|
||||
|
||||
module CppOldDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
}
|
||||
|
||||
@@ -153,10 +153,11 @@ predicate jumpStep(Node n1, Node n2) { none() }
|
||||
* Thus, `node2` references an object with a field `f` that contains the
|
||||
* value of `node1`.
|
||||
*/
|
||||
predicate storeStep(Node node1, Content f, PostUpdateNode node2) {
|
||||
predicate storeStep(Node node1, ContentSet f, Node node2) {
|
||||
exists(ClassAggregateLiteral aggr, Field field |
|
||||
// The following line requires `node2` to be both an `ExprNode` and a
|
||||
// The following lines requires `node2` to be both an `ExprNode` and a
|
||||
// `PostUpdateNode`, which means it must be an `ObjectInitializerNode`.
|
||||
node2 instanceof PostUpdateNode and
|
||||
node2.asExpr() = aggr and
|
||||
f.(FieldContent).getField() = field and
|
||||
aggr.getAFieldExpr(field) = node1.asExpr()
|
||||
@@ -167,12 +168,13 @@ predicate storeStep(Node node1, Content f, PostUpdateNode node2) {
|
||||
node1.asExpr() = a and
|
||||
a.getLValue() = fa
|
||||
) and
|
||||
node2.getPreUpdateNode().asExpr() = fa.getQualifier() and
|
||||
node2.(PostUpdateNode).getPreUpdateNode().asExpr() = fa.getQualifier() and
|
||||
f.(FieldContent).getField() = fa.getTarget()
|
||||
)
|
||||
or
|
||||
exists(ConstructorFieldInit cfi |
|
||||
node2.getPreUpdateNode().(PreConstructorInitThis).getConstructorFieldInit() = cfi and
|
||||
node2.(PostUpdateNode).getPreUpdateNode().(PreConstructorInitThis).getConstructorFieldInit() =
|
||||
cfi and
|
||||
f.(FieldContent).getField() = cfi.getTarget() and
|
||||
node1.asExpr() = cfi.getExpr()
|
||||
)
|
||||
@@ -183,7 +185,7 @@ predicate storeStep(Node node1, Content f, PostUpdateNode node2) {
|
||||
* Thus, `node1` references an object with a field `f` whose value ends up in
|
||||
* `node2`.
|
||||
*/
|
||||
predicate readStep(Node node1, Content f, Node node2) {
|
||||
predicate readStep(Node node1, ContentSet f, Node node2) {
|
||||
exists(FieldAccess fr |
|
||||
node1.asExpr() = fr.getQualifier() and
|
||||
fr.getTarget() = f.(FieldContent).getField() and
|
||||
@@ -195,7 +197,7 @@ predicate readStep(Node node1, Content f, Node node2) {
|
||||
/**
|
||||
* Holds if values stored inside content `c` are cleared at node `n`.
|
||||
*/
|
||||
predicate clearsContent(Node n, Content c) {
|
||||
predicate clearsContent(Node n, ContentSet c) {
|
||||
none() // stub implementation
|
||||
}
|
||||
|
||||
@@ -235,12 +237,6 @@ class CastNode extends Node {
|
||||
CastNode() { none() } // stub implementation
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `n` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
predicate neverSkipInPathGraph(Node n) { none() }
|
||||
|
||||
class DataFlowCallable = Function;
|
||||
|
||||
class DataFlowExpr = Expr;
|
||||
@@ -265,8 +261,6 @@ class DataFlowCall extends Expr instanceof Call {
|
||||
|
||||
predicate isUnreachableInCall(Node n, DataFlowCall call) { none() } // stub implementation
|
||||
|
||||
int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if access paths with `c` at their head always should be tracked at high
|
||||
* precision. This disables adaptive access path precision for such access paths.
|
||||
|
||||
@@ -26,6 +26,8 @@ import cpp
|
||||
* global (inter-procedural) data flow analyses.
|
||||
*/
|
||||
module DataFlow {
|
||||
import semmle.code.cpp.ir.dataflow.internal.DataFlow
|
||||
private import semmle.code.cpp.ir.dataflow.internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<CppDataFlow>
|
||||
import semmle.code.cpp.ir.dataflow.internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -22,6 +22,8 @@
|
||||
import cpp
|
||||
|
||||
module DataFlow {
|
||||
import semmle.code.cpp.ir.dataflow.internal.DataFlow
|
||||
private import semmle.code.cpp.ir.dataflow.internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<CppDataFlow>
|
||||
import semmle.code.cpp.ir.dataflow.internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -9,7 +9,7 @@ private import DataFlowImplCommon as DataFlowImplCommon
|
||||
* Gets a function that might be called by `call`.
|
||||
*/
|
||||
cached
|
||||
Function viableCallable(CallInstruction call) {
|
||||
DataFlowCallable viableCallable(DataFlowCall call) {
|
||||
DataFlowImplCommon::forceCachingInSameStage() and
|
||||
result = call.getStaticCallTarget()
|
||||
or
|
||||
@@ -235,7 +235,7 @@ private predicate functionSignature(Function f, string qualifiedName, int nparam
|
||||
* Holds if the set of viable implementations that can be called by `call`
|
||||
* might be improved by knowing the call context.
|
||||
*/
|
||||
predicate mayBenefitFromCallContext(CallInstruction call, Function f) {
|
||||
predicate mayBenefitFromCallContext(DataFlowCall call, DataFlowCallable f) {
|
||||
mayBenefitFromCallContext(call, f, _)
|
||||
}
|
||||
|
||||
@@ -259,7 +259,7 @@ private predicate mayBenefitFromCallContext(
|
||||
* Gets a viable dispatch target of `call` in the context `ctx`. This is
|
||||
* restricted to those `call`s for which a context might make a difference.
|
||||
*/
|
||||
Function viableImplInCallContext(CallInstruction call, CallInstruction ctx) {
|
||||
DataFlowCallable viableImplInCallContext(DataFlowCall call, DataFlowCall ctx) {
|
||||
result = viableCallable(call) and
|
||||
exists(int i, Function f |
|
||||
mayBenefitFromCallContext(pragma[only_bind_into](call), f, i) and
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,9 @@
|
||||
/**
|
||||
* Provides IR-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
|
||||
module Private {
|
||||
import DataFlowPrivate
|
||||
import DataFlowDispatch
|
||||
@@ -9,3 +12,10 @@ module Private {
|
||||
module Public {
|
||||
import DataFlowUtil
|
||||
}
|
||||
|
||||
module CppDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
}
|
||||
|
||||
@@ -681,9 +681,7 @@ predicate storeStepImpl(Node node1, Content c, PostFieldUpdateNode node2, boolea
|
||||
* Thus, `node2` references an object with a field `f` that contains the
|
||||
* value of `node1`.
|
||||
*/
|
||||
predicate storeStep(Node node1, Content c, PostFieldUpdateNode node2) {
|
||||
storeStepImpl(node1, c, node2, _)
|
||||
}
|
||||
predicate storeStep(Node node1, ContentSet c, Node node2) { storeStepImpl(node1, c, node2, _) }
|
||||
|
||||
/**
|
||||
* Holds if `operandFrom` flows to `operandTo` using a sequence of conversion-like
|
||||
@@ -744,7 +742,7 @@ predicate nodeHasInstruction(Node node, Instruction instr, int indirectionIndex)
|
||||
* Thus, `node1` references an object with a field `f` whose value ends up in
|
||||
* `node2`.
|
||||
*/
|
||||
predicate readStep(Node node1, Content c, Node node2) {
|
||||
predicate readStep(Node node1, ContentSet c, Node node2) {
|
||||
exists(FieldAddress fa1, Operand operand, int numberOfLoads, int indirectionIndex2 |
|
||||
nodeHasOperand(node2, operand, indirectionIndex2) and
|
||||
// The `1` here matches the `node2.getIndirectionIndex() = 1` conjunct
|
||||
@@ -767,7 +765,7 @@ predicate readStep(Node node1, Content c, Node node2) {
|
||||
/**
|
||||
* Holds if values stored inside content `c` are cleared at node `n`.
|
||||
*/
|
||||
predicate clearsContent(Node n, Content c) {
|
||||
predicate clearsContent(Node n, ContentSet c) {
|
||||
n =
|
||||
any(PostUpdateNode pun, Content d | d.impliesClearOf(c) and storeStepImpl(_, d, pun, true) | pun)
|
||||
.getPreUpdateNode() and
|
||||
@@ -792,7 +790,7 @@ predicate clearsContent(Node n, Content c) {
|
||||
storeStepImpl(_, d, pun, true) and
|
||||
pun.getPreUpdateNode() = n
|
||||
|
|
||||
c.getIndirectionIndex() = d.getIndirectionIndex()
|
||||
c.(Content).getIndirectionIndex() = d.getIndirectionIndex()
|
||||
)
|
||||
)
|
||||
}
|
||||
@@ -833,12 +831,6 @@ class CastNode extends Node {
|
||||
CastNode() { none() } // stub implementation
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `n` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
predicate neverSkipInPathGraph(Node n) { none() }
|
||||
|
||||
/**
|
||||
* A function that may contain code or a variable that may contain itself. When
|
||||
* flow crosses from one _enclosing callable_ to another, the interprocedural
|
||||
@@ -853,7 +845,7 @@ class DataFlowType = Type;
|
||||
|
||||
/** A function call relevant for data flow. */
|
||||
class DataFlowCall extends CallInstruction {
|
||||
Function getEnclosingCallable() { result = this.getEnclosingFunction() }
|
||||
DataFlowCallable getEnclosingCallable() { result = this.getEnclosingFunction() }
|
||||
}
|
||||
|
||||
module IsUnreachableInCall {
|
||||
@@ -924,8 +916,6 @@ module IsUnreachableInCall {
|
||||
|
||||
import IsUnreachableInCall
|
||||
|
||||
int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if access paths with `c` at their head always should be tracked at high
|
||||
* precision. This disables adaptive access path precision for such access paths.
|
||||
|
||||
@@ -6,6 +6,7 @@ extractor: csharp
|
||||
library: true
|
||||
upgrades: upgrades
|
||||
dependencies:
|
||||
codeql/dataflow: ${workspace}
|
||||
codeql/mad: ${workspace}
|
||||
codeql/ssa: ${workspace}
|
||||
codeql/tutorial: ${workspace}
|
||||
|
||||
@@ -6,6 +6,8 @@
|
||||
import csharp
|
||||
|
||||
module DataFlow {
|
||||
import semmle.code.csharp.dataflow.internal.DataFlow
|
||||
private import semmle.code.csharp.dataflow.internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<CsharpDataFlow>
|
||||
import semmle.code.csharp.dataflow.internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -154,17 +154,17 @@ private module DispatchImpl {
|
||||
* call is a delegate call, or if the qualifier accesses a parameter of
|
||||
* the enclosing callable `c` (including the implicit `this` parameter).
|
||||
*/
|
||||
predicate mayBenefitFromCallContext(NonDelegateDataFlowCall call, DataFlowCallable c) {
|
||||
predicate mayBenefitFromCallContext(DataFlowCall call, DataFlowCallable c) {
|
||||
c = call.getEnclosingCallable() and
|
||||
call.getDispatchCall().mayBenefitFromCallContext()
|
||||
call.(NonDelegateDataFlowCall).getDispatchCall().mayBenefitFromCallContext()
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a viable dispatch target of `call` in the context `ctx`. This is
|
||||
* restricted to those `call`s for which a context might make a difference.
|
||||
*/
|
||||
DataFlowCallable viableImplInCallContext(NonDelegateDataFlowCall call, DataFlowCall ctx) {
|
||||
exists(DispatchCall dc | dc = call.getDispatchCall() |
|
||||
DataFlowCallable viableImplInCallContext(DataFlowCall call, DataFlowCall ctx) {
|
||||
exists(DispatchCall dc | dc = call.(NonDelegateDataFlowCall).getDispatchCall() |
|
||||
result.getUnderlyingCallable() =
|
||||
getCallableForDataFlow(dc.getADynamicTargetInCallContext(ctx.(NonDelegateDataFlowCall)
|
||||
.getDispatchCall()).getUnboundDeclaration())
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,9 @@
|
||||
/**
|
||||
* Provides C#-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
|
||||
module Private {
|
||||
import DataFlowPrivate
|
||||
import DataFlowDispatch
|
||||
@@ -9,3 +12,12 @@ module Private {
|
||||
module Public {
|
||||
import DataFlowPublic
|
||||
}
|
||||
|
||||
module CsharpDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
|
||||
predicate accessPathLimit = Private::accessPathLimit/0;
|
||||
}
|
||||
|
||||
@@ -22,11 +22,13 @@ private import semmle.code.cil.internal.SsaImpl as CilSsaImpl
|
||||
private import codeql.util.Unit
|
||||
|
||||
/** Gets the callable in which this node occurs. */
|
||||
DataFlowCallable nodeGetEnclosingCallable(NodeImpl n) { result = n.getEnclosingCallableImpl() }
|
||||
DataFlowCallable nodeGetEnclosingCallable(Node n) {
|
||||
result = n.(NodeImpl).getEnclosingCallableImpl()
|
||||
}
|
||||
|
||||
/** Holds if `p` is a `ParameterNode` of `c` with position `pos`. */
|
||||
predicate isParameterNode(ParameterNodeImpl p, DataFlowCallable c, ParameterPosition pos) {
|
||||
p.isParameterOf(c, pos)
|
||||
predicate isParameterNode(ParameterNode p, DataFlowCallable c, ParameterPosition pos) {
|
||||
p.(ParameterNodeImpl).isParameterOf(c, pos)
|
||||
}
|
||||
|
||||
/** Holds if `arg` is an `ArgumentNode` of `c` with position `pos`. */
|
||||
@@ -1739,7 +1741,7 @@ private PropertyContent getResultContent() {
|
||||
* Holds if data can flow from `node1` to `node2` via an assignment to
|
||||
* content `c`.
|
||||
*/
|
||||
predicate storeStep(Node node1, Content c, Node node2) {
|
||||
predicate storeStep(Node node1, ContentSet c, Node node2) {
|
||||
exists(StoreStepConfiguration x, ExprNode node, boolean postUpdate |
|
||||
hasNodePath(x, node1, node) and
|
||||
if postUpdate = true then node = node2.(PostUpdateNode).getPreUpdateNode() else node = node2
|
||||
@@ -1840,7 +1842,7 @@ private class ReadStepConfiguration extends ControlFlowReachabilityConfiguration
|
||||
/**
|
||||
* Holds if data can flow from `node1` to `node2` via a read of content `c`.
|
||||
*/
|
||||
predicate readStep(Node node1, Content c, Node node2) {
|
||||
predicate readStep(Node node1, ContentSet c, Node node2) {
|
||||
exists(ReadStepConfiguration x |
|
||||
hasNodePath(x, node1, node2) and
|
||||
fieldOrPropertyRead(node1.asExpr(), c, node2.asExpr())
|
||||
@@ -1901,7 +1903,7 @@ predicate readStep(Node node1, Content c, Node node2) {
|
||||
* any value stored inside `f` is cleared at the pre-update node associated with `x`
|
||||
* in `x.f = newValue`.
|
||||
*/
|
||||
predicate clearsContent(Node n, Content c) {
|
||||
predicate clearsContent(Node n, ContentSet c) {
|
||||
fieldOrPropertyStore(_, c, _, n.asExpr(), true)
|
||||
or
|
||||
fieldOrPropertyStore(_, c, _, n.(ObjectInitializerNode).getInitializer(), false)
|
||||
@@ -1949,10 +1951,7 @@ predicate isUnreachableInCall(Node n, DataFlowCall call) {
|
||||
class DataFlowType = Gvn::GvnType;
|
||||
|
||||
/** Gets the type of `n` used for type pruning. */
|
||||
pragma[inline]
|
||||
Gvn::GvnType getNodeType(NodeImpl n) {
|
||||
pragma[only_bind_into](result) = pragma[only_bind_out](n).getDataFlowType()
|
||||
}
|
||||
Gvn::GvnType getNodeType(Node n) { result = n.(NodeImpl).getDataFlowType() }
|
||||
|
||||
/** Gets a string representation of a `DataFlowType`. */
|
||||
string ppReprType(DataFlowType t) { result = t.toString() }
|
||||
@@ -2140,12 +2139,6 @@ class CastNode extends Node {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `n` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
predicate neverSkipInPathGraph(Node n) { none() }
|
||||
|
||||
class DataFlowExpr = DotNet::Expr;
|
||||
|
||||
/** Holds if `e` is an expression that always has the same Boolean value `val`. */
|
||||
@@ -2188,8 +2181,8 @@ predicate forceHighPrecision(Content c) { c instanceof ElementContent }
|
||||
class LambdaCallKind = Unit;
|
||||
|
||||
/** Holds if `creation` is an expression that creates a delegate for `c`. */
|
||||
predicate lambdaCreation(ExprNode creation, LambdaCallKind kind, DataFlowCallable c) {
|
||||
exists(Expr e | e = creation.getExpr() |
|
||||
predicate lambdaCreation(Node creation, LambdaCallKind kind, DataFlowCallable c) {
|
||||
exists(Expr e | e = creation.asExpr() |
|
||||
c.asCallable() =
|
||||
[
|
||||
e.(AnonymousFunctionExpr), e.(CallableAccess).getTarget().getUnboundDeclaration(),
|
||||
|
||||
@@ -6,6 +6,7 @@ extractor: go
|
||||
library: true
|
||||
upgrades: upgrades
|
||||
dependencies:
|
||||
codeql/dataflow: ${workspace}
|
||||
codeql/mad: ${workspace}
|
||||
codeql/tutorial: ${workspace}
|
||||
codeql/util: ${workspace}
|
||||
|
||||
@@ -22,7 +22,9 @@ import go
|
||||
* data flow analysis.
|
||||
*/
|
||||
module DataFlow {
|
||||
import semmle.go.dataflow.internal.DataFlow
|
||||
private import semmle.go.dataflow.internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<GoDataFlow>
|
||||
import semmle.go.dataflow.internal.DataFlowImpl1
|
||||
import Properties
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -92,7 +92,7 @@ private DataFlowCallable getRestrictedInterfaceTarget(DataFlow::CallNode call) {
|
||||
/**
|
||||
* Gets a function that might be called by `call`.
|
||||
*/
|
||||
DataFlowCallable viableCallable(CallExpr ma) {
|
||||
DataFlowCallable viableCallable(DataFlowCall ma) {
|
||||
exists(DataFlow::CallNode call | call.asExpr() = ma |
|
||||
if isConcreteInterfaceCall(call, _, _)
|
||||
then result = getConcreteTarget(call)
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,9 @@
|
||||
/**
|
||||
* Provides Go-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
|
||||
module Private {
|
||||
import DataFlowPrivate
|
||||
import DataFlowDispatch
|
||||
@@ -9,3 +12,12 @@ module Private {
|
||||
module Public {
|
||||
import DataFlowUtil
|
||||
}
|
||||
|
||||
module GoDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
predicate neverSkipInPathGraph = Private::neverSkipInPathGraph/1;
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
}
|
||||
|
||||
@@ -138,7 +138,7 @@ predicate jumpStep(Node n1, Node n2) {
|
||||
* Thus, `node2` references an object with a content `x` that contains the
|
||||
* value of `node1`.
|
||||
*/
|
||||
predicate storeStep(Node node1, Content c, Node node2) {
|
||||
predicate storeStep(Node node1, ContentSet c, Node node2) {
|
||||
// a write `(*p).f = rhs` is modeled as two store steps: `rhs` is flows into field `f` of `(*p)`,
|
||||
// which in turn flows into the pointer content of `p`
|
||||
exists(Write w, Field f, DataFlow::Node base, DataFlow::Node rhs | w.writesField(base, f, rhs) |
|
||||
@@ -165,7 +165,7 @@ predicate storeStep(Node node1, Content c, Node node2) {
|
||||
* Thus, `node1` references an object with a content `c` whose value ends up in
|
||||
* `node2`.
|
||||
*/
|
||||
predicate readStep(Node node1, Content c, Node node2) {
|
||||
predicate readStep(Node node1, ContentSet c, Node node2) {
|
||||
node1 = node2.(PointerDereferenceNode).getOperand() and
|
||||
c = any(DataFlow::PointerContent pc | pc.getPointerType() = node1.getType())
|
||||
or
|
||||
@@ -184,7 +184,7 @@ predicate readStep(Node node1, Content c, Node node2) {
|
||||
/**
|
||||
* Holds if values stored inside content `c` are cleared at node `n`.
|
||||
*/
|
||||
predicate clearsContent(Node n, Content c) {
|
||||
predicate clearsContent(Node n, ContentSet c) {
|
||||
// Because our post-update nodes are shared between multiple pre-update
|
||||
// nodes, attempting to clear content causes summary stores into arg in
|
||||
// particular to malfunction.
|
||||
@@ -371,8 +371,6 @@ predicate isUnreachableInCall(Node n, DataFlowCall call) {
|
||||
getAFalsifiedGuard(call).dominates(n.getBasicBlock())
|
||||
}
|
||||
|
||||
int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if access paths with `c` at their head always should be tracked at high
|
||||
* precision. This disables adaptive access path precision for such access paths.
|
||||
|
||||
@@ -6,6 +6,7 @@ extractor: java
|
||||
library: true
|
||||
upgrades: upgrades
|
||||
dependencies:
|
||||
codeql/dataflow: ${workspace}
|
||||
codeql/mad: ${workspace}
|
||||
codeql/regex: ${workspace}
|
||||
codeql/tutorial: ${workspace}
|
||||
|
||||
@@ -1261,6 +1261,7 @@ predicate notHaveIntersection(RefType t1, RefType t2) {
|
||||
* Holds if there is a common (reflexive, transitive) subtype of the erased
|
||||
* types `t1` and `t2`.
|
||||
*/
|
||||
pragma[nomagic]
|
||||
predicate erasedHaveIntersection(RefType t1, RefType t2) {
|
||||
exists(SrcRefType commonSub |
|
||||
commonSub.getASourceSupertype*() = t1 and commonSub.getASourceSupertype*() = t2
|
||||
|
||||
@@ -6,6 +6,8 @@
|
||||
import java
|
||||
|
||||
module DataFlow {
|
||||
import semmle.code.java.dataflow.internal.DataFlow
|
||||
private import semmle.code.java.dataflow.internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<JavaDataFlow>
|
||||
import semmle.code.java.dataflow.internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,9 @@
|
||||
/**
|
||||
* Provides Java-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
|
||||
module Private {
|
||||
import DataFlowPrivate
|
||||
import DataFlowDispatch
|
||||
@@ -9,3 +12,10 @@ module Private {
|
||||
module Public {
|
||||
import DataFlowUtil
|
||||
}
|
||||
|
||||
module JavaDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
}
|
||||
|
||||
@@ -106,7 +106,7 @@ private predicate instanceFieldAssign(Expr src, FieldAccess fa) {
|
||||
* Thus, `node2` references an object with a field `f` that contains the
|
||||
* value of `node1`.
|
||||
*/
|
||||
predicate storeStep(Node node1, Content f, Node node2) {
|
||||
predicate storeStep(Node node1, ContentSet f, Node node2) {
|
||||
exists(FieldAccess fa |
|
||||
instanceFieldAssign(node1.asExpr(), fa) and
|
||||
node2.(PostUpdateNode).getPreUpdateNode() = getFieldQualifier(fa) and
|
||||
@@ -124,7 +124,7 @@ predicate storeStep(Node node1, Content f, Node node2) {
|
||||
* Thus, `node1` references an object with a field `f` whose value ends up in
|
||||
* `node2`.
|
||||
*/
|
||||
predicate readStep(Node node1, Content f, Node node2) {
|
||||
predicate readStep(Node node1, ContentSet f, Node node2) {
|
||||
exists(FieldRead fr |
|
||||
node1 = getFieldQualifier(fr) and
|
||||
fr.getField() = f.(FieldContent).getField() and
|
||||
@@ -156,7 +156,7 @@ predicate readStep(Node node1, Content f, Node node2) {
|
||||
* any value stored inside `f` is cleared at the pre-update node associated with `x`
|
||||
* in `x.f = newValue`.
|
||||
*/
|
||||
predicate clearsContent(Node n, Content c) {
|
||||
predicate clearsContent(Node n, ContentSet c) {
|
||||
exists(FieldAccess fa |
|
||||
instanceFieldAssign(_, fa) and
|
||||
n = getFieldQualifier(fa) and
|
||||
@@ -207,47 +207,25 @@ DataFlowType getNodeType(Node n) {
|
||||
}
|
||||
|
||||
/** Gets a string representation of a type returned by `getErasedRepr`. */
|
||||
string ppReprType(Type t) {
|
||||
string ppReprType(DataFlowType t) {
|
||||
if t.(BoxedType).getPrimitiveType().getName() = "double"
|
||||
then result = "Number"
|
||||
else result = t.toString()
|
||||
}
|
||||
|
||||
private predicate canContainBool(Type t) {
|
||||
t instanceof BooleanType or
|
||||
any(BooleanType b).(RefType).getASourceSupertype+() = t
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `t1` and `t2` are compatible, that is, whether data can flow from
|
||||
* a node of type `t1` to a node of type `t2`.
|
||||
*/
|
||||
pragma[inline]
|
||||
predicate compatibleTypes(Type t1, Type t2) {
|
||||
exists(Type e1, Type e2 |
|
||||
e1 = getErasedRepr(t1) and
|
||||
e2 = getErasedRepr(t2)
|
||||
|
|
||||
// Because of `getErasedRepr`, `erasedHaveIntersection` is a sufficient
|
||||
// compatibility check, but `conContainBool` is kept as a dummy disjunct
|
||||
// to get the proper join-order.
|
||||
erasedHaveIntersection(e1, e2)
|
||||
or
|
||||
canContainBool(e1) and canContainBool(e2)
|
||||
)
|
||||
}
|
||||
bindingset[t1, t2]
|
||||
pragma[inline_late]
|
||||
predicate compatibleTypes(DataFlowType t1, DataFlowType t2) { erasedHaveIntersection(t1, t2) }
|
||||
|
||||
/** A node that performs a type cast. */
|
||||
class CastNode extends ExprNode {
|
||||
CastNode() { this.getExpr() instanceof CastingExpr }
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `n` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
predicate neverSkipInPathGraph(Node n) { none() }
|
||||
|
||||
private newtype TDataFlowCallable =
|
||||
TSrcCallable(Callable c) or
|
||||
TSummarizedCallable(SummarizedCallable c) or
|
||||
@@ -381,8 +359,6 @@ predicate isUnreachableInCall(Node n, DataFlowCall call) {
|
||||
)
|
||||
}
|
||||
|
||||
int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if access paths with `c` at their head always should be tracked at high
|
||||
* precision. This disables adaptive access path precision for such access paths.
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
private import java
|
||||
private import semmle.code.java.dataflow.ExternalFlow as ExternalFlow
|
||||
private import semmle.code.java.dataflow.internal.DataFlow
|
||||
private import semmle.code.java.dataflow.TaintTracking
|
||||
private import semmle.code.java.security.RequestForgeryConfig
|
||||
private import semmle.code.java.security.CommandLineQuery
|
||||
|
||||
@@ -6,6 +6,7 @@ extractor: python
|
||||
library: true
|
||||
upgrades: upgrades
|
||||
dependencies:
|
||||
codeql/dataflow: ${workspace}
|
||||
codeql/mad: ${workspace}
|
||||
codeql/regex: ${workspace}
|
||||
codeql/tutorial: ${workspace}
|
||||
|
||||
@@ -22,6 +22,8 @@ private import python
|
||||
* global (inter-procedural) data flow analyses.
|
||||
*/
|
||||
module DataFlow {
|
||||
import internal.DataFlow
|
||||
private import internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<PythonDataFlow>
|
||||
import internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1561,7 +1561,8 @@ private class SummaryPostUpdateNode extends FlowSummaryNode, PostUpdateNodeImpl
|
||||
}
|
||||
|
||||
/** Gets a viable run-time target for the call `call`. */
|
||||
DataFlowCallable viableCallable(ExtractedDataFlowCall call) {
|
||||
DataFlowCallable viableCallable(DataFlowCall call) {
|
||||
call instanceof ExtractedDataFlowCall and
|
||||
result = call.getCallable()
|
||||
or
|
||||
// A call to a library callable with a flow summary
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -2,6 +2,7 @@
|
||||
* Provides Python-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
// we need to export `Unit` for the DataFlowImpl* files
|
||||
private import python as Python
|
||||
|
||||
@@ -13,3 +14,12 @@ module Public {
|
||||
import DataFlowPublic
|
||||
import DataFlowUtil
|
||||
}
|
||||
|
||||
module PythonDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
predicate neverSkipInPathGraph = Private::neverSkipInPathGraph/1;
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
}
|
||||
|
||||
@@ -22,8 +22,8 @@ import DataFlowDispatch
|
||||
DataFlowCallable nodeGetEnclosingCallable(Node n) { result = n.getEnclosingCallable() }
|
||||
|
||||
/** Holds if `p` is a `ParameterNode` of `c` with position `pos`. */
|
||||
predicate isParameterNode(ParameterNodeImpl p, DataFlowCallable c, ParameterPosition pos) {
|
||||
p.isParameterOf(c, pos)
|
||||
predicate isParameterNode(ParameterNode p, DataFlowCallable c, ParameterPosition pos) {
|
||||
p.(ParameterNodeImpl).isParameterOf(c, pos)
|
||||
}
|
||||
|
||||
/** Holds if `arg` is an `ArgumentNode` of `c` with position `pos`. */
|
||||
@@ -608,7 +608,7 @@ predicate jumpStepNotSharedWithTypeTracker(Node nodeFrom, Node nodeTo) {
|
||||
* Holds if data can flow from `nodeFrom` to `nodeTo` via an assignment to
|
||||
* content `c`.
|
||||
*/
|
||||
predicate storeStep(Node nodeFrom, Content c, Node nodeTo) {
|
||||
predicate storeStep(Node nodeFrom, ContentSet c, Node nodeTo) {
|
||||
listStoreStep(nodeFrom, c, nodeTo)
|
||||
or
|
||||
setStoreStep(nodeFrom, c, nodeTo)
|
||||
@@ -806,7 +806,7 @@ predicate attributeStoreStep(Node nodeFrom, AttributeContent c, PostUpdateNode n
|
||||
/**
|
||||
* Holds if data can flow from `nodeFrom` to `nodeTo` via a read of content `c`.
|
||||
*/
|
||||
predicate readStep(Node nodeFrom, Content c, Node nodeTo) {
|
||||
predicate readStep(Node nodeFrom, ContentSet c, Node nodeTo) {
|
||||
subscriptReadStep(nodeFrom, c, nodeTo)
|
||||
or
|
||||
iterableUnpackingReadStep(nodeFrom, c, nodeTo)
|
||||
@@ -881,7 +881,7 @@ predicate attributeReadStep(Node nodeFrom, AttributeContent c, AttrRead nodeTo)
|
||||
* any value stored inside `f` is cleared at the pre-update node associated with `x`
|
||||
* in `x.f = newValue`.
|
||||
*/
|
||||
predicate clearsContent(Node n, Content c) {
|
||||
predicate clearsContent(Node n, ContentSet c) {
|
||||
matchClearStep(n, c)
|
||||
or
|
||||
attributeClearStep(n, c)
|
||||
@@ -933,8 +933,6 @@ DataFlowCallable viableImplInCallContext(DataFlowCall call, DataFlowCall ctx) {
|
||||
*/
|
||||
predicate mayBenefitFromCallContext(DataFlowCall call, DataFlowCallable c) { none() }
|
||||
|
||||
int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if access paths with `c` at their head always should be tracked at high
|
||||
* precision. This disables adaptive access path precision for such access paths.
|
||||
|
||||
@@ -10,6 +10,8 @@ import codeql.Locations
|
||||
* global (inter-procedural) data flow analyses.
|
||||
*/
|
||||
module DataFlow {
|
||||
import codeql.ruby.dataflow.internal.DataFlow
|
||||
private import codeql.ruby.dataflow.internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<RubyDataFlow>
|
||||
import codeql.ruby.dataflow.internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1416,6 +1416,8 @@ predicate parameterMatch(ParameterPosition ppos, ArgumentPosition apos) {
|
||||
* This is a temporary hook to support technical debt in the Go language; do not use.
|
||||
*/
|
||||
pragma[inline]
|
||||
predicate golangSpecificParamArgFilter(DataFlowCall call, DataFlow::Node p, ArgumentNode arg) {
|
||||
predicate golangSpecificParamArgFilter(
|
||||
DataFlowCall call, DataFlow::ParameterNode p, ArgumentNode arg
|
||||
) {
|
||||
any()
|
||||
}
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -1,6 +1,9 @@
|
||||
/**
|
||||
* Provides Ruby-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
|
||||
module Private {
|
||||
import DataFlowPrivate
|
||||
import DataFlowDispatch
|
||||
@@ -9,3 +12,16 @@ module Private {
|
||||
module Public {
|
||||
import DataFlowPublic
|
||||
}
|
||||
|
||||
module RubyDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
predicate isParameterNode(ParameterNode p, DataFlowCallable c, ParameterPosition pos) {
|
||||
Private::isParameterNode(p, c, pos)
|
||||
}
|
||||
|
||||
predicate neverSkipInPathGraph = Private::neverSkipInPathGraph/1;
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
}
|
||||
|
||||
@@ -12,7 +12,7 @@ private import FlowSummaryImplSpecific as FlowSummaryImplSpecific
|
||||
private import codeql.ruby.frameworks.data.ModelsAsData
|
||||
|
||||
/** Gets the callable in which this node occurs. */
|
||||
DataFlowCallable nodeGetEnclosingCallable(NodeImpl n) { result = n.getEnclosingCallable() }
|
||||
DataFlowCallable nodeGetEnclosingCallable(Node n) { result = n.(NodeImpl).getEnclosingCallable() }
|
||||
|
||||
/** Holds if `p` is a `ParameterNode` of `c` with position `pos`. */
|
||||
predicate isParameterNode(ParameterNodeImpl p, DataFlowCallable c, ParameterPosition pos) {
|
||||
@@ -1232,7 +1232,7 @@ class DataFlowType extends TDataFlowType {
|
||||
predicate typeStrongerThan(DataFlowType t1, DataFlowType t2) { none() }
|
||||
|
||||
/** Gets the type of `n` used for type pruning. */
|
||||
DataFlowType getNodeType(NodeImpl n) { result = TTodoDataFlowType() and exists(n) }
|
||||
DataFlowType getNodeType(Node n) { result = TTodoDataFlowType() and exists(n) }
|
||||
|
||||
/** Gets a string representation of a `DataFlowType`. */
|
||||
string ppReprType(DataFlowType t) { none() }
|
||||
@@ -1304,8 +1304,6 @@ predicate neverSkipInPathGraph(Node n) {
|
||||
|
||||
class DataFlowExpr = CfgNodes::ExprCfgNode;
|
||||
|
||||
int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if access paths with `c` at their head always should be tracked at high
|
||||
* precision. This disables adaptive access path precision for such access paths.
|
||||
|
||||
@@ -6,6 +6,7 @@ dbscheme: ruby.dbscheme
|
||||
upgrades: upgrades
|
||||
library: true
|
||||
dependencies:
|
||||
codeql/dataflow: ${workspace}
|
||||
codeql/mad: ${workspace}
|
||||
codeql/regex: ${workspace}
|
||||
codeql/ssa: ${workspace}
|
||||
|
||||
@@ -0,0 +1,4 @@
|
||||
---
|
||||
category: minorAnalysis
|
||||
---
|
||||
* Initial release. Moves the shared inter-procedural data-flow library into its own qlpack.
|
||||
460
shared/dataflow/codeql/dataflow/DataFlow.qll
Normal file
460
shared/dataflow/codeql/dataflow/DataFlow.qll
Normal file
@@ -0,0 +1,460 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
import DataFlowParameter
|
||||
|
||||
module Configs<DataFlowParameter Lang> {
|
||||
private import Lang
|
||||
private import DataFlowImplCommon::MakeImplCommon<Lang>
|
||||
import DataFlowImplCommonPublic
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(
|
||||
Node node1, FlowState state1, Node node2, FlowState state2
|
||||
) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
}
|
||||
|
||||
module DataFlowMake<DataFlowParameter Lang> {
|
||||
private import Lang
|
||||
private import DataFlowImpl::MakeImpl<Lang>
|
||||
import Configs<Lang>
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
4763
shared/dataflow/codeql/dataflow/DataFlowImpl.qll
Normal file
4763
shared/dataflow/codeql/dataflow/DataFlowImpl.qll
Normal file
File diff suppressed because it is too large
Load Diff
1488
shared/dataflow/codeql/dataflow/DataFlowImplCommon.qll
Normal file
1488
shared/dataflow/codeql/dataflow/DataFlowImplCommon.qll
Normal file
File diff suppressed because it is too large
Load Diff
220
shared/dataflow/codeql/dataflow/DataFlowParameter.qll
Normal file
220
shared/dataflow/codeql/dataflow/DataFlowParameter.qll
Normal file
@@ -0,0 +1,220 @@
|
||||
signature module DataFlowParameter {
|
||||
class Node {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
}
|
||||
|
||||
class ParameterNode extends Node;
|
||||
|
||||
class ArgumentNode extends Node;
|
||||
|
||||
class ReturnNode extends Node {
|
||||
ReturnKind getKind();
|
||||
}
|
||||
|
||||
class OutNode extends Node;
|
||||
|
||||
class PostUpdateNode extends Node {
|
||||
Node getPreUpdateNode();
|
||||
}
|
||||
|
||||
class CastNode extends Node;
|
||||
|
||||
predicate isParameterNode(ParameterNode p, DataFlowCallable c, ParameterPosition pos);
|
||||
|
||||
predicate isArgumentNode(ArgumentNode n, DataFlowCall call, ArgumentPosition pos);
|
||||
|
||||
DataFlowCallable nodeGetEnclosingCallable(Node node);
|
||||
|
||||
DataFlowType getNodeType(Node node);
|
||||
|
||||
predicate nodeIsHidden(Node node);
|
||||
|
||||
class DataFlowExpr;
|
||||
|
||||
/** Gets the node corresponding to `e`. */
|
||||
Node exprNode(DataFlowExpr e);
|
||||
|
||||
class DataFlowCall {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
DataFlowCallable getEnclosingCallable();
|
||||
}
|
||||
|
||||
class DataFlowCallable {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
}
|
||||
|
||||
class ReturnKind {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
}
|
||||
|
||||
/** Gets a viable implementation of the target of the given `Call`. */
|
||||
DataFlowCallable viableCallable(DataFlowCall c);
|
||||
|
||||
/**
|
||||
* Holds if the set of viable implementations that can be called by `call`
|
||||
* might be improved by knowing the call context.
|
||||
*/
|
||||
predicate mayBenefitFromCallContext(DataFlowCall call, DataFlowCallable c);
|
||||
|
||||
/**
|
||||
* Gets a viable dispatch target of `call` in the context `ctx`. This is
|
||||
* restricted to those `call`s for which a context might make a difference.
|
||||
*/
|
||||
DataFlowCallable viableImplInCallContext(DataFlowCall call, DataFlowCall ctx);
|
||||
|
||||
/**
|
||||
* Gets a node that can read the value returned from `call` with return kind
|
||||
* `kind`.
|
||||
*/
|
||||
OutNode getAnOutNode(DataFlowCall call, ReturnKind kind);
|
||||
|
||||
class DataFlowType {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
}
|
||||
|
||||
string ppReprType(DataFlowType t);
|
||||
|
||||
bindingset[t1, t2]
|
||||
predicate compatibleTypes(DataFlowType t1, DataFlowType t2);
|
||||
|
||||
predicate typeStrongerThan(DataFlowType t1, DataFlowType t2);
|
||||
|
||||
class Content {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
}
|
||||
|
||||
predicate forceHighPrecision(Content c);
|
||||
|
||||
/**
|
||||
* An entity that represents a set of `Content`s.
|
||||
*
|
||||
* The set may be interpreted differently depending on whether it is
|
||||
* stored into (`getAStoreContent`) or read from (`getAReadContent`).
|
||||
*/
|
||||
class ContentSet {
|
||||
/** Gets a content that may be stored into when storing into this set. */
|
||||
Content getAStoreContent();
|
||||
|
||||
/** Gets a content that may be read from when reading from this set. */
|
||||
Content getAReadContent();
|
||||
}
|
||||
|
||||
class ContentApprox {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
}
|
||||
|
||||
ContentApprox getContentApprox(Content c);
|
||||
|
||||
class ParameterPosition {
|
||||
/** Gets a textual representation of this element. */
|
||||
bindingset[this]
|
||||
string toString();
|
||||
}
|
||||
|
||||
class ArgumentPosition {
|
||||
/** Gets a textual representation of this element. */
|
||||
bindingset[this]
|
||||
string toString();
|
||||
}
|
||||
|
||||
predicate parameterMatch(ParameterPosition ppos, ArgumentPosition apos);
|
||||
|
||||
predicate simpleLocalFlowStep(Node node1, Node node2);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `node1` to `node2` through a non-local step
|
||||
* that does not follow a call edge. For example, a step through a global
|
||||
* variable.
|
||||
*/
|
||||
predicate jumpStep(Node node1, Node node2);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `node1` to `node2` via a read of `c`. Thus,
|
||||
* `node1` references an object with a content `c.getAReadContent()` whose
|
||||
* value ends up in `node2`.
|
||||
*/
|
||||
predicate readStep(Node node1, ContentSet c, Node node2);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `node1` to `node2` via a store into `c`. Thus,
|
||||
* `node2` references an object with a content `c.getAStoreContent()` that
|
||||
* contains the value of `node1`.
|
||||
*/
|
||||
predicate storeStep(Node node1, ContentSet c, Node node2);
|
||||
|
||||
/**
|
||||
* Holds if values stored inside content `c` are cleared at node `n`. For example,
|
||||
* any value stored inside `f` is cleared at the pre-update node associated with `x`
|
||||
* in `x.f = newValue`.
|
||||
*/
|
||||
predicate clearsContent(Node n, ContentSet c);
|
||||
|
||||
/**
|
||||
* Holds if the value that is being tracked is expected to be stored inside content `c`
|
||||
* at node `n`.
|
||||
*/
|
||||
predicate expectsContent(Node n, ContentSet c);
|
||||
|
||||
/**
|
||||
* Holds if the node `n` is unreachable when the call context is `call`.
|
||||
*/
|
||||
predicate isUnreachableInCall(Node n, DataFlowCall call);
|
||||
|
||||
default int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if flow is allowed to pass from parameter `p` and back to itself as a
|
||||
* side-effect, resulting in a summary from `p` to itself.
|
||||
*
|
||||
* One example would be to allow flow like `p.foo = p.bar;`, which is disallowed
|
||||
* by default as a heuristic.
|
||||
*/
|
||||
predicate allowParameterReturnInSelf(ParameterNode p);
|
||||
|
||||
class LambdaCallKind;
|
||||
|
||||
/** Holds if `creation` is an expression that creates a lambda of kind `kind` for `c`. */
|
||||
predicate lambdaCreation(Node creation, LambdaCallKind kind, DataFlowCallable c);
|
||||
|
||||
/** Holds if `call` is a lambda call of kind `kind` where `receiver` is the lambda expression. */
|
||||
predicate lambdaCall(DataFlowCall call, LambdaCallKind kind, Node receiver);
|
||||
|
||||
/** Extra data-flow steps needed for lambda flow analysis. */
|
||||
predicate additionalLambdaFlowStep(Node nodeFrom, Node nodeTo, boolean preservesValue);
|
||||
|
||||
/**
|
||||
* Holds if `n` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkipInPathGraph(Node n) { none() }
|
||||
|
||||
/**
|
||||
* Gets an additional term that is added to the `join` and `branch` computations to reflect
|
||||
* an additional forward or backwards branching factor that is not taken into account
|
||||
* when calculating the (virtual) dispatch cost.
|
||||
*
|
||||
* Argument `arg` is part of a path from a source to a sink, and `p` is the target parameter.
|
||||
*/
|
||||
int getAdditionalFlowIntoCallNodeTerm(ArgumentNode arg, ParameterNode p);
|
||||
|
||||
predicate golangSpecificParamArgFilter(DataFlowCall call, ParameterNode p, ArgumentNode arg);
|
||||
}
|
||||
8
shared/dataflow/qlpack.yml
Normal file
8
shared/dataflow/qlpack.yml
Normal file
@@ -0,0 +1,8 @@
|
||||
name: codeql/dataflow
|
||||
version: 0.0.1-dev
|
||||
groups: shared
|
||||
library: true
|
||||
dependencies:
|
||||
codeql/ssa: ${workspace}
|
||||
codeql/util: ${workspace}
|
||||
warnOnImplicitThis: true
|
||||
@@ -3,6 +3,8 @@
|
||||
* global (inter-procedural) data flow analyses.
|
||||
*/
|
||||
module DataFlow {
|
||||
import internal.DataFlow
|
||||
private import internal.DataFlowImplSpecific
|
||||
private import codeql.dataflow.DataFlow
|
||||
import DataFlowMake<SwiftDataFlow>
|
||||
import internal.DataFlowImpl1
|
||||
}
|
||||
|
||||
@@ -1,450 +0,0 @@
|
||||
/**
|
||||
* Provides an implementation of global (interprocedural) data flow. This file
|
||||
* re-exports the local (intraprocedural) data flow analysis from
|
||||
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
|
||||
* through the `Global` and `GlobalWithState` modules.
|
||||
*/
|
||||
|
||||
private import DataFlowImplCommon
|
||||
private import DataFlowImplSpecific::Private
|
||||
import DataFlowImplSpecific::Public
|
||||
import DataFlowImplCommonPublic
|
||||
private import DataFlowImpl
|
||||
|
||||
/** An input configuration for data flow. */
|
||||
signature module ConfigSig {
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source.
|
||||
*/
|
||||
predicate isSource(Node source);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink.
|
||||
*/
|
||||
predicate isSink(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or isAdditionalFlowStep(_, node)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/** An input configuration for data flow using flow state. */
|
||||
signature module StateConfigSig {
|
||||
bindingset[this]
|
||||
class FlowState;
|
||||
|
||||
/**
|
||||
* Holds if `source` is a relevant data flow source with the given initial
|
||||
* `state`.
|
||||
*/
|
||||
predicate isSource(Node source, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if `sink` is a relevant data flow sink accepting `state`.
|
||||
*/
|
||||
predicate isSink(Node sink, FlowState state);
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited. This completely removes
|
||||
* `node` from the data flow graph.
|
||||
*/
|
||||
default predicate isBarrier(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data flow through `node` is prohibited when the flow state is
|
||||
* `state`.
|
||||
*/
|
||||
default predicate isBarrier(Node node, FlowState state) { none() }
|
||||
|
||||
/** Holds if data flow into `node` is prohibited. */
|
||||
default predicate isBarrierIn(Node node) { none() }
|
||||
|
||||
/** Holds if data flow out of `node` is prohibited. */
|
||||
default predicate isBarrierOut(Node node) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
|
||||
|
||||
/**
|
||||
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
|
||||
* This step is only applicable in `state1` and updates the flow state to `state2`.
|
||||
*/
|
||||
default predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
|
||||
none()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if an arbitrary number of implicit read steps of content `c` may be
|
||||
* taken at `node`.
|
||||
*/
|
||||
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
|
||||
|
||||
/**
|
||||
* Holds if `node` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
default predicate neverSkip(Node node) {
|
||||
isAdditionalFlowStep(node, _) or
|
||||
isAdditionalFlowStep(_, node) or
|
||||
isAdditionalFlowStep(node, _, _, _) or
|
||||
isAdditionalFlowStep(_, _, node, _)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the virtual dispatch branching limit when calculating field flow.
|
||||
* This can be overridden to a smaller value to improve performance (a
|
||||
* value of 0 disables field flow), or a larger value to get more results.
|
||||
*/
|
||||
default int fieldFlowBranchLimit() { result = 2 }
|
||||
|
||||
/**
|
||||
* Gets a data flow configuration feature to add restrictions to the set of
|
||||
* valid flow paths.
|
||||
*
|
||||
* - `FeatureHasSourceCallContext`:
|
||||
* Assume that sources have some existing call context to disallow
|
||||
* conflicting return-flow directly following the source.
|
||||
* - `FeatureHasSinkCallContext`:
|
||||
* Assume that sinks have some existing call context to disallow
|
||||
* conflicting argument-to-parameter flow directly preceding the sink.
|
||||
* - `FeatureEqualSourceSinkCallContext`:
|
||||
* Implies both of the above and additionally ensures that the entire flow
|
||||
* path preserves the call context.
|
||||
*
|
||||
* These features are generally not relevant for typical end-to-end data flow
|
||||
* queries, but should only be used for constructing paths that need to
|
||||
* somehow be pluggable in another path context.
|
||||
*/
|
||||
default FlowFeature getAFeature() { none() }
|
||||
|
||||
/** Holds if sources should be grouped in the result of `flowPath`. */
|
||||
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
|
||||
|
||||
/** Holds if sinks should be grouped in the result of `flowPath`. */
|
||||
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
|
||||
|
||||
/**
|
||||
* Holds if hidden nodes should be included in the data flow graph.
|
||||
*
|
||||
* This feature should only be used for debugging or when the data flow graph
|
||||
* is not visualized (as it is in a `path-problem` query).
|
||||
*/
|
||||
default predicate includeHiddenNodes() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the exploration limit for `partialFlow` and `partialFlowRev`
|
||||
* measured in approximate number of interprocedural steps.
|
||||
*/
|
||||
signature int explorationLimitSig();
|
||||
|
||||
/**
|
||||
* The output of a global data flow computation.
|
||||
*/
|
||||
signature module GlobalFlowSig {
|
||||
/**
|
||||
* A `Node` augmented with a call context (except for sinks) and an access path.
|
||||
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
|
||||
*/
|
||||
class PathNode;
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*
|
||||
* The corresponding paths are generated from the end-points and the graph
|
||||
* included in the module `PathGraph`.
|
||||
*/
|
||||
predicate flowPath(PathNode source, PathNode sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from `source` to `sink`.
|
||||
*/
|
||||
predicate flow(Node source, Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowTo(Node sink);
|
||||
|
||||
/**
|
||||
* Holds if data can flow from some source to `sink`.
|
||||
*/
|
||||
predicate flowToExpr(DataFlowExpr sink);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation.
|
||||
*/
|
||||
module Global<ConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import DefaultState<Config>
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `Global` instead. */
|
||||
deprecated module Make<ConfigSig Config> implements GlobalFlowSig {
|
||||
import Global<Config>
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a global data flow computation using flow state.
|
||||
*/
|
||||
module GlobalWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
private module C implements FullStateConfigSig {
|
||||
import Config
|
||||
}
|
||||
|
||||
import Impl<C>
|
||||
}
|
||||
|
||||
/** DEPRECATED: Use `GlobalWithState` instead. */
|
||||
deprecated module MakeWithState<StateConfigSig Config> implements GlobalFlowSig {
|
||||
import GlobalWithState<Config>
|
||||
}
|
||||
|
||||
signature class PathNodeSig {
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString();
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
);
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode();
|
||||
}
|
||||
|
||||
signature module PathGraphSig<PathNodeSig PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
predicate edges(PathNode a, PathNode b);
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
predicate nodes(PathNode n, string key, string val);
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out);
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from two `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathGraphSig<PathNode1> Graph1,
|
||||
PathGraphSig<PathNode2> Graph2>
|
||||
{
|
||||
private newtype TPathNode =
|
||||
TPathNode1(PathNode1 p) or
|
||||
TPathNode2(PathNode2 p)
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the two given graphs. */
|
||||
class PathNode extends TPathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { this = TPathNode1(result) }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { this = TPathNode2(result) }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() {
|
||||
result = this.asPathNode1().toString() or
|
||||
result = this.asPathNode2().toString()
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
this.asPathNode1().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn) or
|
||||
this.asPathNode2().hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() {
|
||||
result = this.asPathNode1().getNode() or
|
||||
result = this.asPathNode2().getNode()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) {
|
||||
Graph1::edges(a.asPathNode1(), b.asPathNode1()) or
|
||||
Graph2::edges(a.asPathNode2(), b.asPathNode2())
|
||||
}
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Graph1::nodes(n.asPathNode1(), key, val) or
|
||||
Graph2::nodes(n.asPathNode2(), key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Graph1::subpaths(arg.asPathNode1(), par.asPathNode1(), ret.asPathNode1(), out.asPathNode1()) or
|
||||
Graph2::subpaths(arg.asPathNode2(), par.asPathNode2(), ret.asPathNode2(), out.asPathNode2())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Constructs a `PathGraph` from three `PathGraph`s by disjoint union.
|
||||
*/
|
||||
module MergePathGraph3<
|
||||
PathNodeSig PathNode1, PathNodeSig PathNode2, PathNodeSig PathNode3,
|
||||
PathGraphSig<PathNode1> Graph1, PathGraphSig<PathNode2> Graph2, PathGraphSig<PathNode3> Graph3>
|
||||
{
|
||||
private module MergedInner = MergePathGraph<PathNode1, PathNode2, Graph1, Graph2>;
|
||||
|
||||
private module Merged =
|
||||
MergePathGraph<MergedInner::PathNode, PathNode3, MergedInner::PathGraph, Graph3>;
|
||||
|
||||
/** A node in a graph of path explanations that is formed by disjoint union of the three given graphs. */
|
||||
class PathNode instanceof Merged::PathNode {
|
||||
/** Gets this as a projection on the first given `PathGraph`. */
|
||||
PathNode1 asPathNode1() { result = super.asPathNode1().asPathNode1() }
|
||||
|
||||
/** Gets this as a projection on the second given `PathGraph`. */
|
||||
PathNode2 asPathNode2() { result = super.asPathNode1().asPathNode2() }
|
||||
|
||||
/** Gets this as a projection on the third given `PathGraph`. */
|
||||
PathNode3 asPathNode3() { result = super.asPathNode2() }
|
||||
|
||||
/** Gets a textual representation of this element. */
|
||||
string toString() { result = super.toString() }
|
||||
|
||||
/**
|
||||
* Holds if this element is at the specified location.
|
||||
* The location spans column `startcolumn` of line `startline` to
|
||||
* column `endcolumn` of line `endline` in file `filepath`.
|
||||
* For more information, see
|
||||
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
|
||||
*/
|
||||
predicate hasLocationInfo(
|
||||
string filepath, int startline, int startcolumn, int endline, int endcolumn
|
||||
) {
|
||||
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
|
||||
}
|
||||
|
||||
/** Gets the underlying `Node`. */
|
||||
Node getNode() { result = super.getNode() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides the query predicates needed to include a graph in a path-problem query.
|
||||
*/
|
||||
module PathGraph implements PathGraphSig<PathNode> {
|
||||
/** Holds if `(a,b)` is an edge in the graph of data flow path explanations. */
|
||||
query predicate edges(PathNode a, PathNode b) { Merged::PathGraph::edges(a, b) }
|
||||
|
||||
/** Holds if `n` is a node in the graph of data flow path explanations. */
|
||||
query predicate nodes(PathNode n, string key, string val) {
|
||||
Merged::PathGraph::nodes(n, key, val)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `(arg, par, ret, out)` forms a subpath-tuple, that is, flow through
|
||||
* a subpath between `par` and `ret` with the connecting edges `arg -> par` and
|
||||
* `ret -> out` is summarized as the edge `arg -> out`.
|
||||
*/
|
||||
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
|
||||
Merged::PathGraph::subpaths(arg, par, ret, out)
|
||||
}
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -2,6 +2,7 @@
|
||||
* Provides Swift-specific definitions for use in the data flow library.
|
||||
*/
|
||||
|
||||
private import codeql.dataflow.DataFlowParameter
|
||||
// we need to export `Unit` for the DataFlowImpl* files
|
||||
private import swift as Swift
|
||||
|
||||
@@ -13,3 +14,10 @@ module Private {
|
||||
module Public {
|
||||
import DataFlowPublic
|
||||
}
|
||||
|
||||
module SwiftDataFlow implements DataFlowParameter {
|
||||
import Private
|
||||
import Public
|
||||
|
||||
Node exprNode(DataFlowExpr e) { result = Public::exprNode(e) }
|
||||
}
|
||||
|
||||
@@ -10,11 +10,11 @@ private import codeql.swift.dataflow.internal.FlowSummaryImpl as FlowSummaryImpl
|
||||
private import codeql.swift.frameworks.StandardLibrary.PointerTypes
|
||||
|
||||
/** Gets the callable in which this node occurs. */
|
||||
DataFlowCallable nodeGetEnclosingCallable(NodeImpl n) { result = n.getEnclosingCallable() }
|
||||
DataFlowCallable nodeGetEnclosingCallable(Node n) { result = n.(NodeImpl).getEnclosingCallable() }
|
||||
|
||||
/** Holds if `p` is a `ParameterNode` of `c` with position `pos`. */
|
||||
predicate isParameterNode(ParameterNodeImpl p, DataFlowCallable c, ParameterPosition pos) {
|
||||
p.isParameterOf(c, pos)
|
||||
predicate isParameterNode(ParameterNode p, DataFlowCallable c, ParameterPosition pos) {
|
||||
p.(ParameterNodeImpl).isParameterOf(c, pos)
|
||||
}
|
||||
|
||||
/** Holds if `arg` is an `ArgumentNode` of `c` with position `pos`. */
|
||||
@@ -804,7 +804,7 @@ class DataFlowType extends TDataFlowType {
|
||||
predicate typeStrongerThan(DataFlowType t1, DataFlowType t2) { none() }
|
||||
|
||||
/** Gets the type of `n` used for type pruning. */
|
||||
DataFlowType getNodeType(NodeImpl n) {
|
||||
DataFlowType getNodeType(Node n) {
|
||||
any() // return the singleton DataFlowType until we support type pruning for Swift
|
||||
}
|
||||
|
||||
@@ -857,18 +857,8 @@ class CastNode extends Node {
|
||||
CastNode() { none() }
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `n` should never be skipped over in the `PathGraph` and in path
|
||||
* explanations.
|
||||
*/
|
||||
predicate neverSkipInPathGraph(Node n) { none() }
|
||||
|
||||
class DataFlowExpr = Expr;
|
||||
|
||||
class DataFlowParameter = ParamDecl;
|
||||
|
||||
int accessPathLimit() { result = 5 }
|
||||
|
||||
/**
|
||||
* Holds if access paths with `c` at their head always should be tracked at high
|
||||
* precision. This disables adaptive access path precision for such access paths.
|
||||
|
||||
@@ -137,7 +137,7 @@ ExprNode exprNode(DataFlowExpr e) { result.asExpr() = e }
|
||||
/**
|
||||
* Gets the node corresponding to the value of parameter `p` at function entry.
|
||||
*/
|
||||
ParameterNode parameterNode(DataFlowParameter p) { result.getParameter() = p }
|
||||
ParameterNode parameterNode(ParamDecl p) { result.getParameter() = p }
|
||||
|
||||
/**
|
||||
* Holds if data flows from `nodeFrom` to `nodeTo` in exactly one local
|
||||
|
||||
@@ -6,6 +6,7 @@ dbscheme: swift.dbscheme
|
||||
upgrades: upgrades
|
||||
library: true
|
||||
dependencies:
|
||||
codeql/dataflow: ${workspace}
|
||||
codeql/regex: ${workspace}
|
||||
codeql/mad: ${workspace}
|
||||
codeql/ssa: ${workspace}
|
||||
|
||||
Reference in New Issue
Block a user