Shared: Add DataFlow::DeduplicatePathGraph

This commit is contained in:
Asger F
2023-10-02 10:50:43 +02:00
parent f0971684e3
commit cba7b98f7a

View File

@@ -851,4 +851,176 @@ module DataFlowMake<LocationSig Location, InputSig<Location> Lang> {
}
}
}
/**
* Generates a `PathGraph` in which equivalent path nodes are merged, in order to avoid duplicate paths.
*/
module DeduplicatePathGraph<PathNodeSig InputPathNode, PathGraphSig<InputPathNode> Graph> {
// NOTE: there is a known limitation in that this module cannot see which nodes are sources or sinks.
// This only matters in the rare case where a sink PathNode has a non-empty set of succesors, and there is a
// non-sink PathNode with the same `(node, toString)` value and the same successors, but is transitively
// reachable from a different set of PathNodes. (And conversely for sources).
//
/**
* Gets a successor of `node`, taking `subpaths` into account.
*/
private InputPathNode getASuccessorLike(InputPathNode node) {
Graph::edges(node, result)
or
Graph::subpaths(node, _, _, result) // arg -> out
//
// Note that there is no case for `arg -> param` or `ret -> out` for subpaths.
// It is OK to collapse nodes inside a subpath while calls to that subpaths aren't collapsed and vice versa.
}
private InputPathNode getAPredecessorLike(InputPathNode node) {
node = getASuccessorLike(result)
}
pragma[nomagic]
private InputPathNode getAPathNode(Node node, string toString) {
result.getNode() = node and
Graph::nodes(result, _, toString)
}
private signature predicate collapseCandidateSig(Node node, string toString);
private signature InputPathNode stepSig(InputPathNode node);
/**
* Performs a forward or backward pass computing which `(node, toString)` pairs can subsume their corresponding
* path nodes.
*
* This is similar to automaton minimization, but for an NFA. Since minimizing an NFA is NP-hard (and does not have
* a unique minimal NFA), we operate with the simpler model: for a given `(node, toString)` pair, either all
* corresponding path nodes are merged, or none are merged.
*
* Comments are written as if this checks for outgoing edges and propagates backward, though the module is also
* used to perform the opposite direction.
*/
private module MakeDiscriminatorPass<collapseCandidateSig/2 collapseCandidate, stepSig/1 step> {
/**
* Gets the number of `(node, toString)` pairs reachable in one step from `pathNode`.
*/
private int getOutDegreeFromPathNode(InputPathNode pathNode) {
result = count(Node node, string toString | step(pathNode) = getAPathNode(node, toString))
}
/**
* Gets the number of `(node2, toString2)` pairs reachable in one step from path nodes corresponding to `(node, toString)`.
*/
private int getOutDegreeFromNode(Node node, string toString) {
result =
strictcount(Node node2, string toString2 |
step(getAPathNode(node, toString)) = getAPathNode(node2, toString2)
)
}
/** Holds if `(node, toString)` cannot be collapsed (but was a candidate for being collapsed). */
predicate discriminatedPair(Node node, string toString) {
collapseCandidate(node, toString) and
(
// Check if all corresponding PathNodes have the same successor sets when projected to `(node, toString)`.
// To do this, we check that each successor set has the same size as the union of the succesor sets.
// - If the successor sets are equal, then they are also equal to their union, and so have the correct size.
// - Conversely, if two successor sets are not equal, one of them must be missing an element that is present
// in the union, but must still be a subset of the union, and thus be strictly smaller than the union.
getOutDegreeFromPathNode(getAPathNode(node, toString)) <
getOutDegreeFromNode(node, toString)
or
// Retain flow state if one of the successors requires it to be retained
discriminatedPathNode(step(getAPathNode(node, toString)))
)
}
/** Holds if `pathNode` cannot be collapsed. */
predicate discriminatedPathNode(InputPathNode pathNode) {
exists(Node node, string toString |
discriminatedPair(node, toString) and
getAPathNode(node, toString) = pathNode
)
}
}
private predicate initialCandidate(Node node, string toString) {
exists(getAPathNode(node, toString))
}
private module Pass1 = MakeDiscriminatorPass<initialCandidate/2, getASuccessorLike/1>;
private module Pass2 = MakeDiscriminatorPass<Pass1::discriminatedPair/2, getAPredecessorLike/1>;
private newtype TPathNode =
TPreservedPathNode(InputPathNode node) { Pass2::discriminatedPathNode(node) } or
TCollapsedPathNode(Node node, string toString) {
initialCandidate(node, toString) and
not Pass2::discriminatedPair(node, toString)
}
/** A node in the path graph after equivalent nodes have been collapsed. */
class PathNode extends TPathNode {
private Node asCollapsedNode() { this = TCollapsedPathNode(result, _) }
private InputPathNode asPreservedNode() { this = TPreservedPathNode(result) }
/** Gets a correspondng node in the original graph. */
InputPathNode getAnOriginalPathNode() {
exists(Node node, string toString |
this = TCollapsedPathNode(node, toString) and
result = getAPathNode(node, toString)
)
or
result = this.asPreservedNode()
}
/** Gets a string representation of this node. */
string toString() {
result = this.asPreservedNode().toString() or this = TCollapsedPathNode(_, result)
}
/**
* Holds if this element is at the specified location.
* The location spans column `startcolumn` of line `startline` to
* column `endcolumn` of line `endline` in file `filepath`.
* For more information, see
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
*/
predicate hasLocationInfo(
string filepath, int startline, int startcolumn, int endline, int endcolumn
) {
this.getAnOriginalPathNode()
.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
}
/** Gets the corresponding data-flow node. */
Node getNode() {
result = this.asCollapsedNode()
or
result = this.asPreservedNode().getNode()
}
}
/**
* Provides the query predicates needed to include a graph in a path-problem query.
*/
module PathGraph implements PathGraphSig<PathNode> {
query predicate nodes(PathNode node, string key, string val) {
Graph::nodes(node.getAnOriginalPathNode(), key, val)
}
query predicate edges(PathNode node1, PathNode node2) {
Graph::edges(node1.getAnOriginalPathNode(), node2.getAnOriginalPathNode())
}
query predicate subpaths(PathNode arg, PathNode par, PathNode ret, PathNode out) {
// Note: this may look suspiciously simple, but it's not an oversight. Even if the caller needs to retain state,
// it is entirely possible to step through a subpath in which state has been projected away.
Graph::subpaths(arg.getAnOriginalPathNode(), par.getAnOriginalPathNode(),
ret.getAnOriginalPathNode(), out.getAnOriginalPathNode())
}
}
// Re-export the PathGraph so the user can import a single module and get both PathNode and the query predicates
import PathGraph
}
}