mirror of
https://github.com/github/codeql.git
synced 2025-12-16 16:53:25 +01:00
Java: Add ModulusAnalysis.
This commit is contained in:
322
java/ql/src/semmle/code/java/dataflow/ModulusAnalysis.qll
Normal file
322
java/ql/src/semmle/code/java/dataflow/ModulusAnalysis.qll
Normal file
@@ -0,0 +1,322 @@
|
||||
/**
|
||||
* Provides inferences of the form: `e` equals `b + v` modulo `m` where `e` is
|
||||
* an expression, `b` is a `Bound` (typically zero or the value of an SSA
|
||||
* variable), and `v` is an integer in the range `[0 .. m-1]`.
|
||||
*/
|
||||
|
||||
import java
|
||||
private import SSA
|
||||
private import RangeUtils
|
||||
private import semmle.code.java.controlflow.Guards
|
||||
import Bound
|
||||
|
||||
/**
|
||||
* Holds if `e + delta` equals `v` at `pos`.
|
||||
*/
|
||||
private predicate valueFlowStepSsa(SsaVariable v, SsaReadPosition pos, Expr e, int delta) {
|
||||
ssaUpdateStep(v, e, delta) and pos.hasReadOfVar(v)
|
||||
or
|
||||
exists(Guard guard, boolean testIsTrue |
|
||||
pos.hasReadOfVar(v) and
|
||||
guard = eqFlowCond(v, e, delta, true, testIsTrue) and
|
||||
guardDirectlyControlsSsaRead(guard, pos, testIsTrue)
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `add` is the addition of `larg` and `rarg`, neither of which are
|
||||
* `ConstantIntegerExpr`s.
|
||||
*/
|
||||
private predicate nonConstAddition(Expr add, Expr larg, Expr rarg) {
|
||||
(
|
||||
exists(AddExpr a | a = add |
|
||||
larg = a.getLeftOperand() and
|
||||
rarg = a.getRightOperand()
|
||||
) or
|
||||
exists(AssignAddExpr a | a = add |
|
||||
larg = a.getDest() and
|
||||
rarg = a.getRhs()
|
||||
)
|
||||
) and
|
||||
not larg instanceof ConstantIntegerExpr and
|
||||
not rarg instanceof ConstantIntegerExpr
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `sub` is the subtraction of `larg` and `rarg`, where `rarg` is not
|
||||
* a `ConstantIntegerExpr`.
|
||||
*/
|
||||
private predicate nonConstSubtraction(Expr sub, Expr larg, Expr rarg) {
|
||||
(
|
||||
exists(SubExpr s | s = sub |
|
||||
larg = s.getLeftOperand() and
|
||||
rarg = s.getRightOperand()
|
||||
) or
|
||||
exists(AssignSubExpr s | s = sub |
|
||||
larg = s.getDest() and
|
||||
rarg = s.getRhs()
|
||||
)
|
||||
) and
|
||||
not rarg instanceof ConstantIntegerExpr
|
||||
}
|
||||
|
||||
/** Gets an expression that is the remainder modulo `mod` of `arg`. */
|
||||
private Expr modExpr(Expr arg, int mod) {
|
||||
exists(RemExpr rem |
|
||||
result = rem and
|
||||
arg = rem.getLeftOperand() and
|
||||
rem.getRightOperand().(CompileTimeConstantExpr).getIntValue() = mod and
|
||||
mod >= 2
|
||||
) or
|
||||
exists(CompileTimeConstantExpr c |
|
||||
mod = 2.pow([1..30]) and
|
||||
c.getIntValue() = mod - 1 and
|
||||
result.(AndBitwiseExpr).hasOperands(arg, c)
|
||||
) or
|
||||
result.(ParExpr).getExpr() = modExpr(arg, mod)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a guard that tests whether `v` is congruent with `val` modulo `mod` on
|
||||
* its `testIsTrue` branch.
|
||||
*/
|
||||
private Guard moduloCheck(SsaVariable v, int val, int mod, boolean testIsTrue) {
|
||||
exists(Expr rem, CompileTimeConstantExpr c, int r, boolean polarity |
|
||||
result.isEquality(rem, c, polarity) and
|
||||
c.getIntValue() = r and
|
||||
rem = modExpr(v.getAUse(), mod) and
|
||||
(
|
||||
testIsTrue = polarity and val = r
|
||||
or
|
||||
testIsTrue = polarity.booleanNot() and mod = 2 and val = 1 - r and
|
||||
(r = 0 or r = 1)
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if a guard ensures that `v` at `pos` is congruent with `val` modulo `mod`.
|
||||
*/
|
||||
private predicate moduloGuardedRead(SsaVariable v, SsaReadPosition pos, int val, int mod) {
|
||||
exists(Guard guard, boolean testIsTrue |
|
||||
pos.hasReadOfVar(v) and
|
||||
guard = moduloCheck(v, val, mod, testIsTrue) and
|
||||
guardControlsSsaRead(guard, pos, testIsTrue)
|
||||
)
|
||||
}
|
||||
|
||||
/** Holds if `factor` is a power of 2 that divides `mask`. */
|
||||
bindingset[mask]
|
||||
private predicate andmaskFactor(int mask, int factor) {
|
||||
mask % factor = 0 and
|
||||
factor = 2.pow([1..30])
|
||||
}
|
||||
|
||||
/** Holds if `e` is evenly divisible by `factor`. */
|
||||
private predicate evenlyDivisibleExpr(Expr e, int factor) {
|
||||
exists(ConstantIntegerExpr c, int k | k = c.getIntValue() |
|
||||
e.(MulExpr).getAnOperand() = c and factor = k.abs() and factor >= 2 or
|
||||
e.(AssignMulExpr).getSource() = c and factor = k.abs() and factor >= 2 or
|
||||
e.(LShiftExpr).getRightOperand() = c and factor = 2.pow(k) and k > 0 or
|
||||
e.(AssignLShiftExpr).getRhs() = c and factor = 2.pow(k) and k > 0 or
|
||||
e.(AndBitwiseExpr).getAnOperand() = c and factor = max(int f | andmaskFactor(k, f)) or
|
||||
e.(AssignAndExpr).getSource() = c and factor = max(int f | andmaskFactor(k, f))
|
||||
)
|
||||
}
|
||||
|
||||
private predicate id(BasicBlock x, BasicBlock y) { x = y }
|
||||
|
||||
private predicate idOf(BasicBlock x, int y) = equivalenceRelation(id/2)(x, y)
|
||||
|
||||
private int getId(BasicBlock bb) { idOf(bb, result) }
|
||||
|
||||
/**
|
||||
* Holds if `inp` is an input to `phi` along `edge` and this input has index `r`
|
||||
* in an arbitrary 1-based numbering of the input edges to `phi`.
|
||||
*/
|
||||
private predicate rankedPhiInput(SsaPhiNode phi, SsaVariable inp, SsaReadPositionPhiInputEdge edge, int r) {
|
||||
edge.phiInput(phi, inp) and
|
||||
edge = rank[r](SsaReadPositionPhiInputEdge e | e.phiInput(phi, _) | e order by getId(e.getOrigBlock()))
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `rix` is the number of input edges to `phi`.
|
||||
*/
|
||||
private predicate maxPhiInputRank(SsaPhiNode phi, int rix) {
|
||||
rix = max(int r | rankedPhiInput(phi, _, _, r))
|
||||
}
|
||||
|
||||
private int gcdLim() { result = 128 }
|
||||
|
||||
/**
|
||||
* Gets the greatest common divisor of `x` and `y`. This is restricted to small
|
||||
* inputs and the case when `x` and `y` are not relatively prime.
|
||||
*/
|
||||
private int gcd(int x, int y) {
|
||||
result != 1 and
|
||||
result = x.abs() and y = 0 and x in [-gcdLim()..gcdLim()]
|
||||
or
|
||||
result = gcd(y, x % y) and y != 0 and x in [-gcdLim()..gcdLim()]
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the remainder of `val` modulo `mod`.
|
||||
*
|
||||
* For `mod = 0` the result equals `val` and for `mod > 1` the result is within
|
||||
* the range `[0 .. mod-1]`.
|
||||
*/
|
||||
bindingset[val, mod]
|
||||
private int remainder(int val, int mod) {
|
||||
mod = 0 and result = val or
|
||||
mod > 1 and result = ((val % mod) + mod) % mod
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `inp` is an input to `phi` and equals `phi` modulo `mod` along `edge`.
|
||||
*/
|
||||
private predicate phiSelfModulus(SsaPhiNode phi, SsaVariable inp, SsaReadPositionPhiInputEdge edge, int mod) {
|
||||
exists(SsaBound phibound, int v, int m |
|
||||
edge.phiInput(phi, inp) and
|
||||
phibound.getSsa() = phi and
|
||||
ssaModulus(inp, edge, phibound, v, m) and
|
||||
mod = gcd(m, v) and
|
||||
mod != 1
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `b + val` modulo `mod` is a candidate congruence class for `phi`.
|
||||
*/
|
||||
private predicate phiModulusInit(SsaPhiNode phi, Bound b, int val, int mod) {
|
||||
exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge |
|
||||
edge.phiInput(phi, inp) and
|
||||
ssaModulus(inp, edge, b, val, mod)
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if all inputs to `phi` numbered `1` to `rix` are equal to `b + val` modulo `mod`.
|
||||
*/
|
||||
private predicate phiModulusRankStep(SsaPhiNode phi, Bound b, int val, int mod, int rix) {
|
||||
rix = 0 and
|
||||
phiModulusInit(phi, b, val, mod)
|
||||
or
|
||||
exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge, int v1, int m1 |
|
||||
mod != 1 and
|
||||
val = remainder(v1, mod)
|
||||
|
|
||||
exists(int v2, int m2 |
|
||||
rankedPhiInput(phi, inp, edge, rix) and
|
||||
phiModulusRankStep(phi, b, v1, m1, rix - 1) and
|
||||
ssaModulus(inp, edge, b, v2, m2) and
|
||||
mod = gcd(gcd(m1, m2), v1 - v2)
|
||||
)
|
||||
or
|
||||
exists(int m2 |
|
||||
rankedPhiInput(phi, inp, edge, rix) and
|
||||
phiModulusRankStep(phi, b, v1, m1, rix - 1) and
|
||||
phiSelfModulus(phi, inp, edge, m2) and
|
||||
mod = gcd(m1, m2)
|
||||
)
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `phi` is equal to `b + val` modulo `mod`.
|
||||
*/
|
||||
private predicate phiModulus(SsaPhiNode phi, Bound b, int val, int mod) {
|
||||
exists(int r |
|
||||
maxPhiInputRank(phi, r) and
|
||||
phiModulusRankStep(phi, b, val, mod, r)
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `v` at `pos` is equal to `b + val` modulo `mod`.
|
||||
*/
|
||||
private predicate ssaModulus(SsaVariable v, SsaReadPosition pos, Bound b, int val, int mod) {
|
||||
phiModulus(v, b, val, mod) and pos.hasReadOfVar(v)
|
||||
or
|
||||
b.(SsaBound).getSsa() = v and pos.hasReadOfVar(v) and val = 0 and mod = 0
|
||||
or
|
||||
exists(Expr e, int val0, int delta |
|
||||
exprModulus(e, b, val0, mod) and
|
||||
valueFlowStepSsa(v, pos, e, delta) and
|
||||
val = remainder(val0 + delta, mod)
|
||||
)
|
||||
or
|
||||
moduloGuardedRead(v, pos, val, mod) and b instanceof ZeroBound
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `e` is equal to `b + val` modulo `mod`.
|
||||
*
|
||||
* There are two cases for the modulus:
|
||||
* - `mod = 0`: The equality `e = b + val` is an ordinary equality.
|
||||
* - `mod > 1`: `val` lies within the range `[0 .. mod-1]`.
|
||||
*/
|
||||
cached
|
||||
predicate exprModulus(Expr e, Bound b, int val, int mod) {
|
||||
e = b.getExpr(val) and mod = 0 or
|
||||
evenlyDivisibleExpr(e, mod) and val = 0 and b instanceof ZeroBound or
|
||||
exists(SsaVariable v, SsaReadPositionBlock bb |
|
||||
ssaModulus(v, bb, b, val, mod) and
|
||||
e = v.getAUse() and
|
||||
bb.getBlock() = e.getBasicBlock()
|
||||
) or
|
||||
exists(Expr mid, int val0, int delta |
|
||||
exprModulus(mid, b, val0, mod) and
|
||||
valueFlowStep(e, mid, delta) and
|
||||
val = remainder(val0 + delta, mod)
|
||||
) or
|
||||
exists(ConditionalExpr cond, int v1, int v2, int m1, int m2 |
|
||||
cond = e and
|
||||
condExprBranchModulus(cond, true, b, v1, m1) and
|
||||
condExprBranchModulus(cond, false, b, v2, m2) and
|
||||
mod = gcd(gcd(m1, m2), v1 - v2) and
|
||||
mod != 1 and
|
||||
val = remainder(v1, mod)
|
||||
) or
|
||||
exists(Bound b1, Bound b2, int v1, int v2, int m1, int m2 |
|
||||
addModulus(e, true, b1, v1, m1) and
|
||||
addModulus(e, false, b2, v2, m2) and
|
||||
mod = gcd(m1, m2) and
|
||||
mod != 1 and
|
||||
val = remainder(v1 + v2, mod)
|
||||
|
|
||||
b = b1 and b2 instanceof ZeroBound or
|
||||
b = b2 and b1 instanceof ZeroBound
|
||||
) or
|
||||
exists(int v1, int v2, int m1, int m2 |
|
||||
subModulus(e, true, b, v1, m1) and
|
||||
subModulus(e, false, any(ZeroBound zb), v2, m2) and
|
||||
mod = gcd(m1, m2) and
|
||||
mod != 1 and
|
||||
val = remainder(v1 - v2, mod)
|
||||
)
|
||||
}
|
||||
|
||||
private predicate condExprBranchModulus(ConditionalExpr cond, boolean branch, Bound b, int val, int mod) {
|
||||
exprModulus(cond.getTrueExpr(), b, val, mod) and branch = true or
|
||||
exprModulus(cond.getFalseExpr(), b, val, mod) and branch = false
|
||||
}
|
||||
|
||||
private predicate addModulus(Expr add, boolean isLeft, Bound b, int val, int mod) {
|
||||
exists(Expr larg, Expr rarg |
|
||||
nonConstAddition(add, larg, rarg)
|
||||
|
|
||||
exprModulus(larg, b, val, mod) and isLeft = true
|
||||
or
|
||||
exprModulus(rarg, b, val, mod) and isLeft = false
|
||||
)
|
||||
}
|
||||
|
||||
private predicate subModulus(Expr sub, boolean isLeft, Bound b, int val, int mod) {
|
||||
exists(Expr larg, Expr rarg |
|
||||
nonConstSubtraction(sub, larg, rarg)
|
||||
|
|
||||
exprModulus(larg, b, val, mod) and isLeft = true
|
||||
or
|
||||
exprModulus(rarg, b, val, mod) and isLeft = false
|
||||
)
|
||||
}
|
||||
@@ -68,7 +68,7 @@ private import SSA
|
||||
private import RangeUtils
|
||||
private import semmle.code.java.controlflow.internal.GuardsLogic
|
||||
private import SignAnalysis
|
||||
private import ParityAnalysis
|
||||
private import ModulusAnalysis
|
||||
private import semmle.code.java.Reflection
|
||||
private import semmle.code.java.Collections
|
||||
private import semmle.code.java.Maps
|
||||
@@ -133,6 +133,29 @@ private predicate boundCondition(ComparisonExpr comp, SsaVariable v, Expr e, int
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Holds if `comp` is a comparison between `x` and `y` for which `y - x` has a
|
||||
* fixed value modulo some `mod > 1`, such that the comparison can be
|
||||
* strengthened by `strengthen` when evaluating to `testIsTrue`.
|
||||
*/
|
||||
private predicate modulusComparison(ComparisonExpr comp, boolean testIsTrue, int strengthen) {
|
||||
exists(Bound b, int v1, int v2, int mod, boolean resultIsStrict, int d, int k |
|
||||
// If `x <= y` and `x =(mod) b + v1` and `y =(mod) b + v2` then
|
||||
// `0 <= y - x =(mod) v2 - v1`. By choosing `k =(mod) v2 - v1` with
|
||||
// `0 <= k < mod` we get `k <= y - x`. If the resulting comparison is
|
||||
// strict then the strengthening amount is instead `k - 1` modulo `mod`:
|
||||
// `x < y` means `0 <= y - x - 1 =(mod) k - 1` so `k - 1 <= y - x - 1` and
|
||||
// thus `k - 1 < y - x` with `0 <= k - 1 < mod`.
|
||||
exprModulus(comp.getLesserOperand(), b, v1, mod) and
|
||||
exprModulus(comp.getGreaterOperand(), b, v2, mod) and
|
||||
(testIsTrue = true or testIsTrue = false) and
|
||||
(if comp.isStrict() then resultIsStrict = testIsTrue else resultIsStrict = testIsTrue.booleanNot()) and
|
||||
(resultIsStrict = true and d = 1 or resultIsStrict = false and d = 0) and
|
||||
(testIsTrue = true and k = v2 - v1 or testIsTrue = false and k = v1 - v2) and
|
||||
strengthen = (((k - d) % mod) + mod) % mod
|
||||
)
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets a condition that tests whether `v` is bounded by `e + delta`.
|
||||
*
|
||||
@@ -152,10 +175,10 @@ private Guard boundFlowCond(SsaVariable v, Expr e, int delta, boolean upper, boo
|
||||
upper = false and strengthen = 1)
|
||||
else
|
||||
strengthen = 0) and
|
||||
// A non-strict inequality `x <= y` can be strengthened to `x <= y - 1` if
|
||||
// `x` and `y` have opposite parities, and a strict inequality `x < y` can
|
||||
// be similarly strengthened if `x` and `y` have equal parities.
|
||||
(if parityComparison(comp, resultIsStrict) then d2 = strengthen else d2 = 0) and
|
||||
(
|
||||
exists(int k | modulusComparison(comp, testIsTrue, k) and d2 = strengthen * k) or
|
||||
not modulusComparison(comp, testIsTrue, _) and d2 = 0
|
||||
) and
|
||||
// A strict inequality `x < y` can be strengthened to `x <= y - 1`.
|
||||
(resultIsStrict = true and d3 = strengthen or resultIsStrict = false and d3 = 0) and
|
||||
delta = d1 + d2 + d3
|
||||
|
||||
@@ -76,7 +76,7 @@ public class A {
|
||||
int[] a = new int[3 * n];
|
||||
int sum = 0;
|
||||
for (int i = 0; i < a.length; i += 3) {
|
||||
sum += a[i] + a[i + 1] + a[i + 2]; // OK - FP
|
||||
sum += a[i] + a[i + 1] + a[i + 2]; // OK
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -5,8 +5,6 @@
|
||||
| A.java:46:14:46:22 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length. |
|
||||
| A.java:55:14:55:19 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length. |
|
||||
| A.java:64:14:64:19 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length. |
|
||||
| A.java:79:21:79:28 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length. |
|
||||
| A.java:79:32:79:39 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length + 1. |
|
||||
| A.java:86:12:86:16 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length. |
|
||||
| A.java:97:18:97:31 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length + 8. |
|
||||
| A.java:110:14:110:21 | ...[...] | This array access might be out of bounds, as the index might be equal to the array length. |
|
||||
|
||||
Reference in New Issue
Block a user