Java: Refactor data flow library.

This commit is contained in:
Anders Schack-Mulligen
2023-02-14 15:03:04 +01:00
parent a5bb336647
commit 00a273b959
16 changed files with 5392 additions and 37023 deletions

View File

@@ -1,13 +1,18 @@
{
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift": [
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl.qll"
],
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift Legacy Configuration": [
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl1.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl2.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl3.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl4.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl5.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImpl6.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImplForSerializability.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImplForOnActivityResult.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImplForOnActivityResult.qll"
],
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift todo": [
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlowImpl.qll",
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlowImpl2.qll",
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlowImpl3.qll",
@@ -42,7 +47,9 @@
"swift/ql/lib/codeql/swift/dataflow/internal/DataFlowImpl.qll"
],
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift Common": [
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImplCommon.qll",
"java/ql/lib/semmle/code/java/dataflow/internal/DataFlowImplCommon.qll"
],
"DataFlow Java/C++/C#/Go/Python/Ruby/Swift Common todo": [
"cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlowImplCommon.qll",
"cpp/ql/lib/semmle/code/cpp/ir/dataflow/internal/DataFlowImplCommon.qll",
"cpp/ql/lib/experimental/semmle/code/cpp/ir/dataflow/internal/DataFlowImplCommon.qll",

View File

@@ -6,5 +6,6 @@
import java
module DataFlow {
import semmle.code.java.dataflow.internal.DataFlowImpl
import semmle.code.java.dataflow.internal.DataFlow
import semmle.code.java.dataflow.internal.DataFlowImpl1
}

View File

@@ -8,5 +8,6 @@ import semmle.code.java.dataflow.DataFlow2
import semmle.code.java.dataflow.internal.TaintTrackingUtil::StringBuilderVarModule
module TaintTracking {
import semmle.code.java.dataflow.internal.tainttracking1.TaintTracking
import semmle.code.java.dataflow.internal.tainttracking1.TaintTrackingImpl
}

View File

@@ -0,0 +1,237 @@
/**
* Provides an implementation of global (interprocedural) data flow. This file
* re-exports the local (intraprocedural) data flow analysis from
* `DataFlowImplSpecific::Public` and adds a global analysis, mainly exposed
* through the `Make` and `MakeWithState` modules.
*/
private import DataFlowImplCommon
private import DataFlowImplSpecific::Private
import DataFlowImplSpecific::Public
import DataFlowImplCommonPublic
private import DataFlowImpl
/** An input configuration for data flow. */
signature module ConfigSig {
/**
* Holds if `source` is a relevant data flow source.
*/
predicate isSource(Node source);
/**
* Holds if `sink` is a relevant data flow sink.
*/
predicate isSink(Node sink);
/**
* Holds if data flow through `node` is prohibited. This completely removes
* `node` from the data flow graph.
*/
default predicate isBarrier(Node node) { none() }
/** Holds if data flow into `node` is prohibited. */
default predicate isBarrierIn(Node node) { none() }
/** Holds if data flow out of `node` is prohibited. */
default predicate isBarrierOut(Node node) { none() }
/**
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
*/
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
/**
* Holds if an arbitrary number of implicit read steps of content `c` may be
* taken at `node`.
*/
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
/**
* Gets the virtual dispatch branching limit when calculating field flow.
* This can be overridden to a smaller value to improve performance (a
* value of 0 disables field flow), or a larger value to get more results.
*/
default int fieldFlowBranchLimit() { result = 2 }
/**
* Gets a data flow configuration feature to add restrictions to the set of
* valid flow paths.
*
* - `FeatureHasSourceCallContext`:
* Assume that sources have some existing call context to disallow
* conflicting return-flow directly following the source.
* - `FeatureHasSinkCallContext`:
* Assume that sinks have some existing call context to disallow
* conflicting argument-to-parameter flow directly preceding the sink.
* - `FeatureEqualSourceSinkCallContext`:
* Implies both of the above and additionally ensures that the entire flow
* path preserves the call context.
*/
default FlowFeature getAFeature() { none() }
/** Holds if sources should be grouped in the result of `hasFlowPath`. */
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
/** Holds if sinks should be grouped in the result of `hasFlowPath`. */
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
/**
* Holds if hidden nodes should be included in the data flow graph.
*
* This feature should only be used for debugging or when the data flow graph
* is not visualized (as it is in a `path-problem` query).
*/
default predicate includeHiddenNodes() { none() }
}
/** An input configuration for data flow using flow state. */
signature module StateConfigSig {
bindingset[this]
class FlowState;
/**
* Holds if `source` is a relevant data flow source with the given initial
* `state`.
*/
predicate isSource(Node source, FlowState state);
/**
* Holds if `sink` is a relevant data flow sink accepting `state`.
*/
predicate isSink(Node sink, FlowState state);
/**
* Holds if data flow through `node` is prohibited. This completely removes
* `node` from the data flow graph.
*/
default predicate isBarrier(Node node) { none() }
/**
* Holds if data flow through `node` is prohibited when the flow state is
* `state`.
*/
predicate isBarrier(Node node, FlowState state);
/** Holds if data flow into `node` is prohibited. */
default predicate isBarrierIn(Node node) { none() }
/** Holds if data flow out of `node` is prohibited. */
default predicate isBarrierOut(Node node) { none() }
/**
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
*/
default predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
/**
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
* This step is only applicable in `state1` and updates the flow state to `state2`.
*/
predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2);
/**
* Holds if an arbitrary number of implicit read steps of content `c` may be
* taken at `node`.
*/
default predicate allowImplicitRead(Node node, ContentSet c) { none() }
/**
* Gets the virtual dispatch branching limit when calculating field flow.
* This can be overridden to a smaller value to improve performance (a
* value of 0 disables field flow), or a larger value to get more results.
*/
default int fieldFlowBranchLimit() { result = 2 }
/**
* Gets a data flow configuration feature to add restrictions to the set of
* valid flow paths.
*
* - `FeatureHasSourceCallContext`:
* Assume that sources have some existing call context to disallow
* conflicting return-flow directly following the source.
* - `FeatureHasSinkCallContext`:
* Assume that sinks have some existing call context to disallow
* conflicting argument-to-parameter flow directly preceding the sink.
* - `FeatureEqualSourceSinkCallContext`:
* Implies both of the above and additionally ensures that the entire flow
* path preserves the call context.
*/
default FlowFeature getAFeature() { none() }
/** Holds if sources should be grouped in the result of `hasFlowPath`. */
default predicate sourceGrouping(Node source, string sourceGroup) { none() }
/** Holds if sinks should be grouped in the result of `hasFlowPath`. */
default predicate sinkGrouping(Node sink, string sinkGroup) { none() }
/**
* Holds if hidden nodes should be included in the data flow graph.
*
* This feature should only be used for debugging or when the data flow graph
* is not visualized (as it is in a `path-problem` query).
*/
default predicate includeHiddenNodes() { none() }
}
/**
* Gets the exploration limit for `hasPartialFlow` and `hasPartialFlowRev`
* measured in approximate number of interprocedural steps.
*/
signature int explorationLimitSig();
/**
* The output of a data flow computation.
*/
signature module DataFlowSig {
/**
* A `Node` augmented with a call context (except for sinks) and an access path.
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
*/
class PathNode;
/**
* Holds if data can flow from `source` to `sink`.
*
* The corresponding paths are generated from the end-points and the graph
* included in the module `PathGraph`.
*/
predicate hasFlowPath(PathNode source, PathNode sink);
/**
* Holds if data can flow from `source` to `sink`.
*/
predicate hasFlow(Node source, Node sink);
/**
* Holds if data can flow from some source to `sink`.
*/
predicate hasFlowTo(Node sink);
/**
* Holds if data can flow from some source to `sink`.
*/
predicate hasFlowToExpr(DataFlowExpr sink);
}
/**
* Constructs a standard data flow computation.
*/
module Make<ConfigSig Config> implements DataFlowSig {
private module C implements FullStateConfigSig {
import DefaultState<Config>
import Config
}
import Impl<C>
}
/**
* Constructs a data flow computation using flow state.
*/
module MakeWithState<StateConfigSig Config> implements DataFlowSig {
private module C implements FullStateConfigSig {
import Config
}
import Impl<C>
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,385 @@
/**
* DEPRECATED: Use `Make` and `MakeWithState` instead.
*
* Provides a `Configuration` class backwards-compatible interface to the data
* flow library.
*/
private import DataFlowImplCommon
private import DataFlowImplSpecific::Private
import DataFlowImplSpecific::Public
private import DataFlowImpl
import DataFlowImplCommonPublic
import FlowStateString
/**
* A configuration of interprocedural data flow analysis. This defines
* sources, sinks, and any other configurable aspect of the analysis. Each
* use of the global data flow library must define its own unique extension
* of this abstract class. To create a configuration, extend this class with
* a subclass whose characteristic predicate is a unique singleton string.
* For example, write
*
* ```ql
* class MyAnalysisConfiguration extends DataFlow::Configuration {
* MyAnalysisConfiguration() { this = "MyAnalysisConfiguration" }
* // Override `isSource` and `isSink`.
* // Optionally override `isBarrier`.
* // Optionally override `isAdditionalFlowStep`.
* }
* ```
* Conceptually, this defines a graph where the nodes are `DataFlow::Node`s and
* the edges are those data-flow steps that preserve the value of the node
* along with any additional edges defined by `isAdditionalFlowStep`.
* Specifying nodes in `isBarrier` will remove those nodes from the graph, and
* specifying nodes in `isBarrierIn` and/or `isBarrierOut` will remove in-going
* and/or out-going edges from those nodes, respectively.
*
* Then, to query whether there is flow between some `source` and `sink`,
* write
*
* ```ql
* exists(MyAnalysisConfiguration cfg | cfg.hasFlow(source, sink))
* ```
*
* Multiple configurations can coexist, but two classes extending
* `DataFlow::Configuration` should never depend on each other. One of them
* should instead depend on a `DataFlow2::Configuration`, a
* `DataFlow3::Configuration`, or a `DataFlow4::Configuration`.
*/
abstract class Configuration extends string {
bindingset[this]
Configuration() { any() }
/**
* Holds if `source` is a relevant data flow source.
*/
predicate isSource(Node source) { none() }
/**
* Holds if `source` is a relevant data flow source with the given initial
* `state`.
*/
predicate isSource(Node source, FlowState state) { none() }
/**
* Holds if `sink` is a relevant data flow sink.
*/
predicate isSink(Node sink) { none() }
/**
* Holds if `sink` is a relevant data flow sink accepting `state`.
*/
predicate isSink(Node sink, FlowState state) { none() }
/**
* Holds if data flow through `node` is prohibited. This completely removes
* `node` from the data flow graph.
*/
predicate isBarrier(Node node) { none() }
/**
* Holds if data flow through `node` is prohibited when the flow state is
* `state`.
*/
predicate isBarrier(Node node, FlowState state) { none() }
/** Holds if data flow into `node` is prohibited. */
predicate isBarrierIn(Node node) { none() }
/** Holds if data flow out of `node` is prohibited. */
predicate isBarrierOut(Node node) { none() }
/**
* DEPRECATED: Use `isBarrier` and `BarrierGuard` module instead.
*
* Holds if data flow through nodes guarded by `guard` is prohibited.
*/
deprecated predicate isBarrierGuard(BarrierGuard guard) { none() }
/**
* DEPRECATED: Use `isBarrier` and `BarrierGuard` module instead.
*
* Holds if data flow through nodes guarded by `guard` is prohibited when
* the flow state is `state`
*/
deprecated predicate isBarrierGuard(BarrierGuard guard, FlowState state) { none() }
/**
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
*/
predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
/**
* Holds if data may flow from `node1` to `node2` in addition to the normal data-flow steps.
* This step is only applicable in `state1` and updates the flow state to `state2`.
*/
predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
none()
}
/**
* Holds if an arbitrary number of implicit read steps of content `c` may be
* taken at `node`.
*/
predicate allowImplicitRead(Node node, ContentSet c) { none() }
/**
* Gets the virtual dispatch branching limit when calculating field flow.
* This can be overridden to a smaller value to improve performance (a
* value of 0 disables field flow), or a larger value to get more results.
*/
int fieldFlowBranchLimit() { result = 2 }
/**
* Gets a data flow configuration feature to add restrictions to the set of
* valid flow paths.
*
* - `FeatureHasSourceCallContext`:
* Assume that sources have some existing call context to disallow
* conflicting return-flow directly following the source.
* - `FeatureHasSinkCallContext`:
* Assume that sinks have some existing call context to disallow
* conflicting argument-to-parameter flow directly preceding the sink.
* - `FeatureEqualSourceSinkCallContext`:
* Implies both of the above and additionally ensures that the entire flow
* path preserves the call context.
*/
FlowFeature getAFeature() { none() }
/** Holds if sources should be grouped in the result of `hasFlowPath`. */
predicate sourceGrouping(Node source, string sourceGroup) { none() }
/** Holds if sinks should be grouped in the result of `hasFlowPath`. */
predicate sinkGrouping(Node sink, string sinkGroup) { none() }
/**
* Holds if data may flow from `source` to `sink` for this configuration.
*/
predicate hasFlow(Node source, Node sink) { hasFlow(source, sink, this) }
/**
* Holds if data may flow from `source` to `sink` for this configuration.
*
* The corresponding paths are generated from the end-points and the graph
* included in the module `PathGraph`.
*/
predicate hasFlowPath(PathNode source, PathNode sink) { hasFlowPath(source, sink, this) }
/**
* Holds if data may flow from some source to `sink` for this configuration.
*/
predicate hasFlowTo(Node sink) { hasFlowTo(sink, this) }
/**
* Holds if data may flow from some source to `sink` for this configuration.
*/
predicate hasFlowToExpr(DataFlowExpr sink) { this.hasFlowTo(exprNode(sink)) }
/**
* DEPRECATED: Use `FlowExploration<explorationLimit>` instead.
*
* Gets the exploration limit for `hasPartialFlow` and `hasPartialFlowRev`
* measured in approximate number of interprocedural steps.
*/
deprecated int explorationLimit() { none() }
/**
* Holds if hidden nodes should be included in the data flow graph.
*
* This feature should only be used for debugging or when the data flow graph
* is not visualized (for example in a `path-problem` query).
*/
predicate includeHiddenNodes() { none() }
}
/**
* This class exists to prevent mutual recursion between the user-overridden
* member predicates of `Configuration` and the rest of the data-flow library.
* Good performance cannot be guaranteed in the presence of such recursion, so
* it should be replaced by using more than one copy of the data flow library.
*/
abstract private class ConfigurationRecursionPrevention extends Configuration {
bindingset[this]
ConfigurationRecursionPrevention() { any() }
override predicate hasFlow(Node source, Node sink) {
strictcount(Node n | this.isSource(n)) < 0
or
strictcount(Node n | this.isSource(n, _)) < 0
or
strictcount(Node n | this.isSink(n)) < 0
or
strictcount(Node n | this.isSink(n, _)) < 0
or
strictcount(Node n1, Node n2 | this.isAdditionalFlowStep(n1, n2)) < 0
or
strictcount(Node n1, Node n2 | this.isAdditionalFlowStep(n1, _, n2, _)) < 0
or
super.hasFlow(source, sink)
}
}
/** A bridge class to access the deprecated `isBarrierGuard`. */
private class BarrierGuardGuardedNodeBridge extends Unit {
abstract predicate guardedNode(Node n, Configuration config);
abstract predicate guardedNode(Node n, FlowState state, Configuration config);
}
private class BarrierGuardGuardedNode extends BarrierGuardGuardedNodeBridge {
deprecated override predicate guardedNode(Node n, Configuration config) {
exists(BarrierGuard g |
config.isBarrierGuard(g) and
n = g.getAGuardedNode()
)
}
deprecated override predicate guardedNode(Node n, FlowState state, Configuration config) {
exists(BarrierGuard g |
config.isBarrierGuard(g, state) and
n = g.getAGuardedNode()
)
}
}
private FlowState relevantState(Configuration config) {
config.isSource(_, result) or
config.isSink(_, result) or
config.isBarrier(_, result) or
config.isAdditionalFlowStep(_, result, _, _) or
config.isAdditionalFlowStep(_, _, _, result)
}
private newtype TConfigState =
TMkConfigState(Configuration config, FlowState state) {
state = relevantState(config) or state instanceof FlowStateEmpty
}
private Configuration getConfig(TConfigState state) { state = TMkConfigState(result, _) }
private FlowState getState(TConfigState state) { state = TMkConfigState(_, result) }
private module Config implements FullStateConfigSig {
class FlowState = TConfigState;
predicate isSource(Node source, FlowState state) {
getConfig(state).isSource(source, getState(state))
or
getConfig(state).isSource(source) and getState(state) instanceof FlowStateEmpty
}
predicate isSink(Node sink, FlowState state) {
getConfig(state).isSink(sink, getState(state))
or
getConfig(state).isSink(sink) and getState(state) instanceof FlowStateEmpty
}
predicate isBarrier(Node node) { none() }
predicate isBarrier(Node node, FlowState state) {
getConfig(state).isBarrier(node, getState(state)) or
getConfig(state).isBarrier(node) or
any(BarrierGuardGuardedNodeBridge b).guardedNode(node, getState(state), getConfig(state)) or
any(BarrierGuardGuardedNodeBridge b).guardedNode(node, getConfig(state))
}
predicate isBarrierIn(Node node) { any(Configuration config).isBarrierIn(node) }
predicate isBarrierOut(Node node) { any(Configuration config).isBarrierOut(node) }
predicate isAdditionalFlowStep(Node node1, Node node2) { none() }
predicate isAdditionalFlowStep(Node node1, FlowState state1, Node node2, FlowState state2) {
getConfig(state1).isAdditionalFlowStep(node1, getState(state1), node2, getState(state2)) and
getConfig(state2) = getConfig(state1)
or
getConfig(state1).isAdditionalFlowStep(node1, node2) and state2 = state1
}
predicate allowImplicitRead(Node node, ContentSet c) {
any(Configuration config).allowImplicitRead(node, c)
}
int fieldFlowBranchLimit() { result = min(any(Configuration config).fieldFlowBranchLimit()) }
FlowFeature getAFeature() { result = any(Configuration config).getAFeature() }
predicate sourceGrouping(Node source, string sourceGroup) {
any(Configuration config).sourceGrouping(source, sourceGroup)
}
predicate sinkGrouping(Node sink, string sinkGroup) {
any(Configuration config).sinkGrouping(sink, sinkGroup)
}
predicate includeHiddenNodes() { any(Configuration config).includeHiddenNodes() }
}
private import Impl<Config> as I
import I
/**
* A `Node` augmented with a call context (except for sinks), an access path, and a configuration.
* Only those `PathNode`s that are reachable from a source, and which can reach a sink, are generated.
*/
class PathNode instanceof I::PathNode {
/** Gets a textual representation of this element. */
final string toString() { result = super.toString() }
/**
* Gets a textual representation of this element, including a textual
* representation of the call context.
*/
final string toStringWithContext() { result = super.toStringWithContext() }
/**
* Holds if this element is at the specified location.
* The location spans column `startcolumn` of line `startline` to
* column `endcolumn` of line `endline` in file `filepath`.
* For more information, see
* [Locations](https://codeql.github.com/docs/writing-codeql-queries/providing-locations-in-codeql-queries/).
*/
final predicate hasLocationInfo(
string filepath, int startline, int startcolumn, int endline, int endcolumn
) {
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
}
/** Gets the underlying `Node`. */
final Node getNode() { result = super.getNode() }
/** Gets the `FlowState` of this node. */
final FlowState getState() { result = getState(super.getState()) }
/** Gets the associated configuration. */
final Configuration getConfiguration() { result = getConfig(super.getState()) }
/** Gets a successor of this node, if any. */
final PathNode getASuccessor() { result = super.getASuccessor() }
/** Holds if this node is a source. */
final predicate isSource() { super.isSource() }
/** Holds if this node is a grouping of source nodes. */
final predicate isSourceGroup(string group) { super.isSourceGroup(group) }
/** Holds if this node is a grouping of sink nodes. */
final predicate isSinkGroup(string group) { super.isSinkGroup(group) }
}
private predicate hasFlow(Node source, Node sink, Configuration config) {
exists(PathNode source0, PathNode sink0 |
hasFlowPath(source0, sink0, config) and
source0.getNode() = source and
sink0.getNode() = sink
)
}
private predicate hasFlowPath(PathNode source, PathNode sink, Configuration config) {
hasFlowPath(source, sink) and source.getConfiguration() = config
}
private predicate hasFlowTo(Node sink, Configuration config) { hasFlow(_, sink, config) }
predicate flowsTo = hasFlow/3;

View File

@@ -3,15 +3,18 @@ private import DataFlowImplSpecific::Public
import Cached
module DataFlowImplCommonPublic {
/** A state value to track during data flow. */
class FlowState = string;
/** Provides `FlowState = string`. */
module FlowStateString {
/** A state value to track during data flow. */
class FlowState = string;
/**
* The default state, which is used when the state is unspecified for a source
* or a sink.
*/
class FlowStateEmpty extends FlowState {
FlowStateEmpty() { this = "" }
/**
* The default state, which is used when the state is unspecified for a source
* or a sink.
*/
class FlowStateEmpty extends FlowState {
FlowStateEmpty() { this = "" }
}
}
private newtype TFlowFeature =

View File

@@ -0,0 +1,63 @@
/**
* Provides classes for performing local (intra-procedural) and
* global (inter-procedural) taint-tracking analyses.
*/
import TaintTrackingParameter::Public
private import TaintTrackingParameter::Private
private module AddTaintDefaults<DataFlowInternal::FullStateConfigSig Config> implements
DataFlowInternal::FullStateConfigSig {
import Config
predicate isBarrier(DataFlow::Node node) {
Config::isBarrier(node) or defaultTaintSanitizer(node)
}
predicate isAdditionalFlowStep(DataFlow::Node node1, DataFlow::Node node2) {
Config::isAdditionalFlowStep(node1, node2) or
defaultAdditionalTaintStep(node1, node2)
}
predicate allowImplicitRead(DataFlow::Node node, DataFlow::ContentSet c) {
Config::allowImplicitRead(node, c)
or
(
Config::isSink(node, _) or
Config::isAdditionalFlowStep(node, _) or
Config::isAdditionalFlowStep(node, _, _, _)
) and
defaultImplicitTaintRead(node, c)
}
}
/**
* Constructs a standard taint tracking computation.
*/
module Make<DataFlow::ConfigSig Config> implements DataFlow::DataFlowSig {
private module Config0 implements DataFlowInternal::FullStateConfigSig {
import DataFlowInternal::DefaultState<Config>
import Config
}
private module C implements DataFlowInternal::FullStateConfigSig {
import AddTaintDefaults<Config0>
}
import DataFlowInternal::Impl<C>
}
/**
* Constructs a taint tracking computation using flow state.
*/
module MakeWithState<DataFlow::StateConfigSig Config> implements DataFlow::DataFlowSig {
private module Config0 implements DataFlowInternal::FullStateConfigSig {
import Config
}
private module C implements DataFlowInternal::FullStateConfigSig {
import AddTaintDefaults<Config0>
}
import DataFlowInternal::Impl<C>
}

View File

@@ -2,4 +2,5 @@ import semmle.code.java.dataflow.internal.TaintTrackingUtil as Public
module Private {
import semmle.code.java.dataflow.DataFlow::DataFlow as DataFlow
import semmle.code.java.dataflow.internal.DataFlowImpl as DataFlowInternal
}