Files
codeql-dataflow-sql-injection/codeql-dataflow-sql-injection.md
2020-07-22 14:24:44 -07:00

36 KiB

CodeQL Tutorial for C/C++: Data Flow and SQL Injection

xx: md_toc github < codeql-dataflow-sql-injection.md

Setup Instructions

To run CodeQL queries on dotnet/coreclr, follow these steps:

  1. Install the Visual Studio Code IDE.

  2. Download and install the CodeQL extension for Visual Studio Code. Full setup instructions are here.

  3. Set up the starter workspace.

    • Important: Don't forget to git clone --recursive or git submodule update --init --remote, so that you obtain the standard query libraries.
  4. Open the starter workspace: File > Open Workspace > Browse to vscode-codeql-starter/vscode-codeql-starter.code-workspace.

  5. Download the sample database codeql-dataflow-sql-injection-d5b28fb.zip

  6. Unzip the database.

  7. Import the unzipped database into Visual Studio Code:

    • Click the CodeQL icon in the left sidebar.
    • Place your mouse over Databases, and click the + sign that appears on the right.
    • Choose the unzipped database directory on your filesystem.
  8. Create a new file, name it SqliInjection.ql, save it under codeql-custom-queries-cpp.

If you get stuck, try searching our documentation and blog posts for help and ideas. Below are a few links to help you get started:

The Problem in Action

Running the code is a great way to see the problem and check whether the code is vulnerable.

This program can be compiled and linked, and a simple sqlite db created via

# Build
./build.sh

# Prepare db
./admin rm-db
./admin create-db
./admin show-db

Users can be added via stdin in several ways; the second is a pretend "server" using the echo command.

# Add regular user interactively
./add-user 2>> users.log
First User

# Regular user via "external" process
echo "User Outside" | ./add-user 2>> users.log

Check the db and log:

# Check
./admin show-db

tail -4 users.log 

Looks ok:

0:$ ./admin show-db
87797|First User
87808|User Outside

0:$ tail -4 users.log 
[Tue Jul 21 14:15:46 2020] query: INSERT INTO users VALUES (87797, 'First User')
[Tue Jul 21 14:17:07 2020] query: INSERT INTO users VALUES (87808, 'User Outside')

But there may be bad input; this one guesses the table name and drops it:

# Add Johnny Droptable 
./add-user 2>> users.log
Johnny'); DROP TABLE users; --

And then we have this:

# And the problem:
./admin show-db
0:$ ./admin show-db
Error: near line 2: no such table: users

What happened? The log shows that data was treated as command:

1:$ tail -4 users.log 
[Tue Jul 21 14:15:46 2020] query: INSERT INTO users VALUES (87797, 'First User')
[Tue Jul 21 14:17:07 2020] query: INSERT INTO users VALUES (87808, 'User Outside')
[Tue Jul 21 14:18:25 2020] query: INSERT INTO users VALUES (87817, 'Johnny'); DROP TABLE users; --')

Looking ahead, we now know that there is unsafe external data (source) which reaches (flow path) a database-writing command (sink). Thus, a query written against this code should find at least one taint flow path.

Problem Statement

Many security problems can be phrased in terms of information flow:

Given a (problem-specific) set of sources and sinks, is there a path in the data flow graph from some source to some sink?

The example we look at is SQL injection: sources are user-input, sinks are SQL queries processing a string formed at runtime.

When parts of the string can be specified by the user, they allow an attacker to insert arbitrary sql statements; these could erase a table or extract internal data etc.

We will use CodeQL to analyze the source code constructing a SQL query using string concatenation and then executing that query string. The following example uses the sqlite3 library; it

  • receives user-provided data from stdin and keeps it in buf
  • uses environment data and stores it in id,
  • runs a query in sqlite3_exec

This is intentionally simple code, but it has all the elements that have to be considered in real code and illustrates the QL features.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <sqlite3.h>
#include <time.h>

void write_log(const char* fmt, ...);

void abort_on_error(int rc, sqlite3 *db);

void abort_on_exec_error(int rc, sqlite3 *db, char* zErrMsg);
    
char* get_user_info() {
#define BUFSIZE 1024
    char* buf = (char*) malloc(BUFSIZE * sizeof(char));
    int count;
    // Disable buffering to avoid need for fflush
    // after printf().
    setbuf( stdout, NULL );
    printf("*** Welcome to sql injection ***\n");
    printf("Please enter name: ");
    count = read(STDIN_FILENO, buf, BUFSIZE);
    if (count <= 0) abort();
    /* strip trailing whitespace */
    while (count && isspace(buf[count-1])) {
        buf[count-1] = 0; --count;
    }
    return buf;
}

int get_new_id() {
    int id = getpid();
    return id;
}

void write_info(int id, char* info) {
    sqlite3 *db;
    int rc;
    int bufsize = 1024;
    char *zErrMsg = 0;
    char query[bufsize];
    
    /* open db */
    rc = sqlite3_open("users.sqlite", &db);
    abort_on_error(rc, db);

    /* Format query */
    snprintf(query, bufsize, "INSERT INTO users VALUES (%d, '%s')", id, info);
    write_log("query: %s\n", query);

    /* Write info */
    rc = sqlite3_exec(db, query, NULL, 0, &zErrMsg);
    abort_on_exec_error(rc, db, zErrMsg);

    sqlite3_close(db);
}

int main(int argc, char* argv[]) {
    char* info;
    int id;
    info = get_user_info();
    id = get_new_id();
    write_info(id, info);
    /*
     * show_info(id);
     */
}

In terms of sources, sinks, and information flow, the concrete problem for codeql is:

  1. specifying buf as source,
  2. specifying the query argument to sqlite3_exec() as sink,
  3. specifying some code-specific data flow steps for the codeql library,
  4. using the codeql taint flow library find taint flow paths (if there are any) between the source and the sink.

In the following, we go into more concrete detail and develop codedql scripts to solve this problem.

Data flow overview and illustration

In the previous sections we identified the sources of problematic strings (accesses of info etc.), and the sink that their data may flow to (the argument to sqlite3_exec).

We need to see if there is data flow between the source(s) and this sink.

The solution here is to use the data flow library. Data flow is, as the name suggests, about tracking the flow of data through the program. It helps answers questions like: does this expression ever hold a value that originates from a particular other place in the program?

We can visualize the data flow problem as one of finding paths through a directed graph, where the nodes of the graph are elements in program, and the edges represent the flow of data between those elements. If a path exists, then the data flows between those two nodes.

This graph represents the flow of data from the tainted parameter. The nodes of graph represent program elements that have a value, such as function parameters and expressions. The edges of this graph represent flow through these nodes.

There are two variants of data flow available in CodeQL:

  • Local (“intra-procedural”) data flow models flow within one function; feasible to compute for all functions in a CodeQL database.
  • Global (“inter-procedural”) data flow models flow across function calls; not feasible to compute for all functions in a CodeQL database.

While local data flow is feasible to compute for all functions in a CodeQL database, global data flow is not. This is because the number of paths becomes exponentially larger for global data flow.

The global data flow (and taint tracking) library avoids this problem by requiring that the query author specifies which sources and sinks are applicable. This allows the implementation to compute paths only between the restricted set of nodes, rather than for the full graph.

To illustrate the dataflow for this problem, we have a collection of slides for this workshop.

Tutorial: Recap, Sources, Sinks and Flow Steps

XX:

The tutorial is split into several steps and introduces concepts as they are needed. Experimentation with the presented queries is encouraged, and the autocomplete suggestions (Ctrl + Space) and the jump-to-definition command (F12 in VS Code) are good ways explore the libraries.

Codeql Recap

As quick test of your setup, import the ql cpp library and run the empty query

import cpp
select 1

We'll assume the import cpp is in the header of our query and not rewrite it every time.

XX:

The Data Sink

Now let's find the function sqlite3_exec. In CodeQL, this uses Function and a getName() attribute.

from Function f
where f.getName() = "sqlite3_exec" 
select f

This should find one result,

SQLITE_API int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
  char **errmsg                              /* Error msg written here */
);

in the header sqlite3.h.

Next, let's find the calls to sqlite3_exec using the FunctionCall type

from FunctionCall exec
where exec.getTarget().getName() = "sqlite3_exec" 
select exec

This finds our call in add-user.c,

rc = sqlite3_exec(db, query, NULL, 0, &zErrMsg);

We are interested in the query argument, which we can get using .getArgument:

from FunctionCall exec, Expr query
where
    exec.getTarget().getName() = "sqlite3_exec" and
    query = exec.getArgument(1)
select exec, query

The Data Source

The external data enters through the call

count = read(STDIN_FILENO, buf, BUFSIZE);

We thus want the buf argument to the call of the read function. Together, this is

from FunctionCall read, Expr buf
where
    read.getTarget().getName() = "read" and
    buf = read.getArgument(1)
select read, buf

The Extra Flow Step

The codeql data flow library traverses visible source code fairly well, but flow through opaque functions requires additional support. Functions for which only a headers is available are opaque, and we have one of these here: the call to snprintf. Once we get this call, there are two nodes to identify: the inflow and outflow.

Let's start with snprintf. If we try

from FunctionCall printf
where printf.getTarget().getName() = "snprintf"
select printf

we get zero results. This is puzzling; if we visit the add-user.c source and follow the definition of snprintf, it turns out to be a macro on MacOS:

#undef snprintf
#define snprintf(str, len, ...) \
  __builtin___snprintf_chk (str, len, 0, __darwin_obsz(str), __VA_ARGS__)
#endif

Fortunately, the underlying function __builtin___snprintf_chk has snprintf in the name. So instead of working with C macros from codeql, we generalize our query using a name pattern with .matches:

from FunctionCall printf
where printf.getTarget().getName().matches("%snprintf%")
select printf

This identifies our call

snprintf(query, bufsize, "INSERT INTO users VALUES (%d, '%s')", id, info);

and we need the inflow and outflow nodes next. query is the outflow, info is the inflow.

In the snprintf macro call, those have indices 0 and 4. In the underlying function __builtin___snprintf_chk, the indices are 0 and 6. Using the latter:

from FunctionCall printf, Expr out, Expr into
where
    printf.getTarget().getName().matches("%snprintf%") and
    printf.getArgument(0) = out and
    printf.getArgument(6) = into
select printf, out, into

This correctly identifies the call and the extra flow arguments.

Practice exercise: If you are using linux or windows, generalize this query for the snprintf arguments found there. One way to do this is using or:

printf.getTarget().getName().matches("%snprintf%") and
(
  // mac version
or
 // linux version
or
 // windows version
)

The CodeQL Data Flow Configuration

The previous queries identify our source, sink and one additional flow step. To use global data flow and taint tracking we need some additional codeql setup:

  • a taint flow configuration
  • the path problem header and imports
  • a query formatted for path problems.

These are done next.

Taint Flow Configuration

The way we configure global taint flow is by creating a custom extension of the TaintTracking::Configuration class, and speciyfing isSource, isSink, and isAdditionalTaintStep predicates. A starting configuration can look like the following, with details to follow.

class SqliFlowConfig extends TaintTracking::Configuration {
    SqliFlowConfig() { this = "SqliFlow" }

    override predicate isSource(DataFlow::Node source) {
        // count = read(STDIN_FILENO, buf, BUFSIZE);
    }

    override predicate isSanitizer(DataFlow::Node sanitizer) { none() }

    override predicate isAdditionalTaintStep(DataFlow::Node into, DataFlow::Node out) {
        // Extra taint step for 
        //     snprintf(query, bufsize, "INSERT INTO users VALUES (%d, '%s')", id, info);
    }

    override predicate isSink(DataFlow::Node sink) {
        // rc = sqlite3_exec(db, query, NULL, 0, &zErrMsg);
    }
}

TaintTracking::Configuration is a configuration class. In this case, there will be a single instance of the class, identified by a unique string specified in the characteristic predicate. We then override the isSource predicates to represent the set of possible sources in the program, and isSink to represent the possible set of sinks in the program.

Path Problem Setup

Queries will only list sources and sinks by default. To inspect these results and work with them, we also need the data paths from source to sink. For this, the query needs to have the form of a path problem query.

This requires a modifications to the query header and an extra import:

  • The @kind comment has to be path-problem. This tells the CodeQL toolchain to interpret the results of this query as path results.
  • A new import DataFlow::PathGraph, which will report the path data alongside the query results.

Together, this looks like

/**
 * @name SQLI Vulnerability
 * @description Using untrusted strings in a sql query allows sql injection attacks.
 * @kind path-problem
 * @id cpp/SQLIVulnerable
 * @problem.severity warning
 */

import cpp
import semmle.code.cpp.dataflow.TaintTracking
import DataFlow::PathGraph

Path Problem Query Format

To use this new configuration and PathGraph support, we call the hasFlowPath(source, sink) predicate, which will compute a reachability table between the defined sources and sinks. Behind the scenes, you can think of this as performing a graph search algorithm from sources to sinks. The query will look like this:

from SqliFlowConfig conf, DataFlow::PathNode source, DataFlow::PathNode sink
where conf.hasFlowPath(source, sink)
select sink, source, sink, "Possible SQL injection"

Tutorial: Data Flow Details

With the dataflow configuration in place, we just need to provide the details for source(s), sink(s), and taint step(s).

There are two more steps required to convert our previous queries for use in data flow. These are covered next.

The isSink Predicate

Note that our previous queries used Expr nodes, but the taint query requires DataFlow::Node nodes.

We have identified arguments to the call of the sqlite3_exec function via the query

from FunctionCall exec, Expr query
where
    exec.getTarget().getName() = "sqlite3_exec" and
    query = exec.getArgument(1)
select exec, query

First, we need to incorporate the DataFlow::Node. The key to this is node.asExpr(), which yields the node's expression. Adding this we get

import cpp
import semmle.code.cpp.dataflow.TaintTracking

from FunctionCall exec, Expr query, DataFlow::Node sink
where
    exec.getTarget().getName() = "sqlite3_exec" and
    query = exec.getArgument(1) and
    sink.asExpr() = query
select exec, query, sink

Notice that query is now redundant, so this simplifies to

from FunctionCall exec, DataFlow::Node sink
where
    exec.getTarget().getName() = "sqlite3_exec" and
    sink.asExpr() = exec.getArgument(1) 
select exec, sink

Second, we need this as a predicate of a single argument, predicate isSink(DataFlow::Node sink). For this we introduce the exists() quantifier to move the FunctionCall exec into the body of the query and remove it from the result:

from DataFlow::Node sink
where
    exists(FunctionCall exec |
        exec.getTarget().getName() = "sqlite3_exec" and
        sink.asExpr() = exec.getArgument(1)
    )
select sink

To turn this into a predicate, from contents become arguments, the where becomes the body, and the select is dropped:

predicate isSink(DataFlow::Node sink) {
    // rc = sqlite3_exec(db, query, NULL, 0, &zErrMsg);
    exists(FunctionCall exec |
        exec.getTarget().getName() = "sqlite3_exec" and
        sink.asExpr() = exec.getArgument(1)
    )
}

The Data Source

The external data enters through the call

count = read(STDIN_FILENO, buf, BUFSIZE);

We thus want the buf argument to the call of the read function. Together, this is

from FunctionCall read, Expr buf
where
    read.getTarget().getName() = "read" and
    buf = read.getArgument(1)
select read, buf

The Extra Flow Step

The codeql data flow library traverses visible source code fairly well, but flow through opaque functions requires additional support. Functions for which only a headers is available are opaque, and we have one of these here: the call to snprintf. Once we get this call, there are two nodes to identify: the inflow and outflow.

Let's start with snprintf. If we try

from FunctionCall printf
where printf.getTarget().getName() = "snprintf"
select printf

we get zero results. This is puzzling; if we visit the add-user.c source and follow the definition of snprintf, it turns out to be a macro on MacOS:

#undef snprintf
#define snprintf(str, len, ...) \
  __builtin___snprintf_chk (str, len, 0, __darwin_obsz(str), __VA_ARGS__)
#endif

Fortunately, the underlying function __builtin___snprintf_chk has snprintf in the name. So instead of working with C macros from codeql, we generalize our query using a name pattern with .matches:

from FunctionCall printf
where printf.getTarget().getName().matches("%snprintf%")
select printf

This identifies our call

snprintf(query, bufsize, "INSERT INTO users VALUES (%d, '%s')", id, info);

and we need the inflow and outflow nodes next. query is the outflow, info is the inflow.

In the snprintf macro call, those have indices 0 and 4. In the underlying function __builtin___snprintf_chk, the indices are 0 and 6. Using the latter:

from FunctionCall printf, Expr out, Expr into
where
    printf.getTarget().getName().matches("%snprintf%") and
    printf.getArgument(0) = out and
    printf.getArgument(6) = into
select printf, out, into

This correctly identifies the call and the extra flow arguments.

Practice exercise: If you are using linux or windows, generalize this query for the snprintf arguments found there. One way to do this is using or:

printf.getTarget().getName().matches("%snprintf%") and
(
  // mac version
or
 // linux version
or
 // windows version
)

The isSource Predicate

Recall the query we have to find variable accesses:

from  VariableAccess va
where va.getLocation().getFile().getShortName() = "simple"
select va, va.getTarget() as definition

This query uses the structural information from VariableAccess. For taint flow, we use a DataFlow::Node nd.

This is a direct conversion:

  • to get a VariableAccess from a Node, use node.asExpr to get an Expr
  • and then narrow the Expr to VariableAccess
  • the location information is also available from the Node nd

Together, this gives us

    import cpp
    import semmle.code.cpp.dataflow.TaintTracking

    from DataFlow::Node nd
    where 
        nd.asExpr() instanceof VariableAccess and
        nd.getLocation().getFile().getShortName() = "simple"
    select nd

In the TaintTracking configuration, we use

sqliSourceDemo(source)

so we convert to a predicate:

predicate sqliSourceDemo(DataFlow::Node nd) {
    // variable use
    nd.asExpr() instanceof VariableAccess and
    nd.getLocation().getFile().getShortName() = "simple"
}

This source definition is good for our example but needs adjustment for larger codebases. See sqliSourceProduction in the appendix for an adjusted version.

The isAdditionalTaintStep Predicate

Data flow and taint tracking configuration classes support a number of additional features that help configure the process of building and exploring the data flow path.

One such feature is adding additional taint steps. This is useful if you use libraries which are not modelled by the default taint tracking. You can implement this by overriding isAdditionalTaintStep predicate. This has two parameters, the from and the to node, and essentially allows you to add extra edges into the taint tracking or data flow graph.

For this tutorial, we have provided several predicates that track string and integer taint flow across stl and bsl functions. They are listed in the appendix bslstrings library; here we will use them as library functions via the single predicate

stlBslTaintStep(n1, n2)

Complete query

Using the previous predicates

sqliSourceDemo(source)
sqliSink(sink, _)
stlBslTaintStep(n1, n2)

our full query is now

/**
 * @name SQLI Vulnerability
 * @description Building a sql query dynamically may lead to sql injection vulnerability
 * @kind path-problem
 * @id cpp/SQLIVulnerable
 * @problem.severity warning
 */

import semmle.code.cpp.dataflow.TaintTracking
import semmle.code.cpp.models.implementations.Pure
import DataFlow::PathGraph

/**
 * The taint tracking configuration
 */
class SqliFlowConfig extends TaintTracking::Configuration {
    SqliFlowConfig() { this = "SqliFlow" }

    override predicate isSource(DataFlow::Node source) {
        // Use sqliSourceProduction(this, source) in that case
        sqliSourceDemo(source)
    }

    override predicate isAdditionalTaintStep(DataFlow::Node n1, DataFlow::Node n2) {
        stlBslTaintStep(n1, n2)
    }

    override predicate isSanitizer(DataFlow::Node sanitizer) { none() }

    override predicate isSink(DataFlow::Node sink) { sqliSink(sink, _) }
}

/*
 * The main query
 */

from SqliFlowConfig conf, DataFlow::PathNode source, DataFlow::PathNode sink, string label
where
    // Flow path setup
    conf.hasFlowPath(source, sink) and
    source != sink and
    if source.getNode().asExpr().(VariableAccess).getTarget().hasName(_)
    then label = source.getNode().asExpr().(VariableAccess).getTarget().getName()
    else label = "source"
select sink, source, sink, "Sqli flow from $@", source, label

Appendix

This appendix has the C++ test source, the bslstrings query, and the bslstrings library. The latter are in one file for convenience.

Test case: simple.cc

#include <bslstl_string.h>
#include <bslstl_stringstream.h>

void executeStatement(const bsl::string &sQuery);

int checkClusterSQL(const bsl::string &sDatabase, const bsl::string &sQuery,
                    const bsl::string &sObjectName);

int main(int argc, char **argv) {

    bsl::stringstream oSS;
    // Local constants
    int iUUID = 123;
    bsl::string sObjectName("HELLO");
    // User-supplied iLevel
    int iLevel = std::stol(argv[1]);

    oSS << "SELECT object_name_upper, object_value_name_upper "
        << "FROM pvfx_privilege "
        << "WHERE uuid=" << iUUID << " "
        << "AND object_name_upper=\"" << sObjectName << "\" "
        << "AND pvf_function=\"" << "sFunction" << "\" "
        << "AND pvf_level=" << iLevel;
    bsl::string sQuery(oSS.str());
    int iErrorCode = checkClusterSQL("pvfxdb", sQuery, sObjectName);

    // a_cdb2::SqlService sqlService("default");
    // sqlService.executeStatement(sQuery);
    executeStatement(sQuery);
}
    

bslstrings query and library: bslstrings.ql

The complete query is first, followed by the library components.

/**
 * @name SQLI Vulnerability
 * @description Building a sql query dynamically may lead to sql injection vulnerability
 * @kind path-problem
 * @id cpp/SQLIVulnerable
 * @problem.severity warning
 */

import semmle.code.cpp.dataflow.TaintTracking
import semmle.code.cpp.models.implementations.Pure
import DataFlow::PathGraph

/**
 * The taint tracking configuration
 */
class SqliFlowConfig extends TaintTracking::Configuration {
    SqliFlowConfig() { this = "SqliFlow" }

    override predicate isSource(DataFlow::Node source) {
        // Use sqliSourceProduction(this, source) in that case
        sqliSourceDemo(source)
    }

    override predicate isAdditionalTaintStep(DataFlow::Node n1, DataFlow::Node n2) {
        stlBslTaintStep(n1, n2)
    }

    override predicate isSanitizer(DataFlow::Node sanitizer) { none() }

    override predicate isSink(DataFlow::Node sink) { sqliSink(sink, _) }
}

/*
 * The main query
 */

from SqliFlowConfig conf, DataFlow::PathNode source, DataFlow::PathNode sink, string label
where
    // Flow path setup
    conf.hasFlowPath(source, sink) and
    source != sink and
    if source.getNode().asExpr().(VariableAccess).getTarget().hasName(_)
    then label = source.getNode().asExpr().(VariableAccess).getTarget().getName()
    else label = "source"
select sink, source, sink, "Sqli flow from $@", source, label

// Identify the sink(s) for DataFlow
predicate sqliSink(DataFlow::Node nd, FunctionCall fc) {
    fc.getTarget().getName() = "executeStatement" and
    fc.getArgument(0) = nd.asExpr()
}

// Identify the source(s) for DataFlow; this version for the demonstration.
predicate sqliSourceDemo(DataFlow::Node nd) {
    // variable use
    nd.asExpr() instanceof VariableAccess and
    nd.getLocation().getFile().getShortName() = "simple"
}

// Identify the source(s) for DataFlow; this version for full applications
predicate sqliSourceProduction(SqliFlowConfig config, DataFlow::Node source) {
    // Approximates places where we concatenate a var with a string
    source.asExpr() instanceof VariableAccess and
    config.isAdditionalTaintStep(source, _) and
    // These are the steps where we get an existing value out, so don't use as source.
    not qualifierToCallStep(source, _, _) and
    (
        // We are reading a non-local variable (field, param, etc)
        exists(Variable v |
            source.asExpr().(VariableAccess).getTarget() = v and
            not v instanceof LocalVariable
        )
        or
        // We are reading a local, but something wrote to it since definition
        exists(LocalVariable v, VariableAccess mid |
            source.asExpr().(VariableAccess).getTarget() = v and
            mid.getTarget() = v and
            mid = v.getInitializer().getASuccessor+() and
            source.asExpr() = mid.getASuccessor+()
        )
    )
}

/**
 * Library routines.  These are for more in-depth development.
 */
// argv is a Parameter and exists(DataFlow::Node n | n.asParameter() = e) holds
predicate whatsThere(Element e, string info, int line, string file) {
    line = e.getLocation().getStartLine() and
    line = [10] and
    file = e.getLocation().getFile().getShortName() and
    file.matches("%simple%") and
    info = e.getAQlClass() and
    exists(DataFlow::Node n | n.asParameter() = e)
}

// Basic type that represents a string for our purposes
class StringLikeType extends Type {
    StringLikeType() {
        this.getName().matches("%string%") or
        this.getName().matches("%stream%") or
        this.(ReferenceType).getBaseType() instanceof StringLikeType
    }
}

// Capture all types that may be used to form or append to a string.
class AppendableToString extends Type {
    AppendableToString() {
        this instanceof StringLikeType or
        this instanceof CharPointerType or
        this instanceof IntegralType
    }
}

// Identify pure, non-member functions taking a tainted value and returning a taint, of the form
// val = func(arg).  Avoids overlap with instance-modifying members and generic functions.
predicate pureFuncArgToCallStep(Function f) {
    not f.isMember() and
    (
        f instanceof PureStrFunction or
        f.getName() = "stol"
    ) and
    f.getAParameter().getType().getUnspecifiedType() instanceof AppendableToString and
    f.getType().getUnspecifiedType() instanceof AppendableToString
}

predicate pureFuncArgToCallStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
    pureFuncArgToCallStep(fc.getTarget()) and
    (
        // argument taints call result.  Note that pure functions don't have PostUpdateNodes
        n1.asExpr() = fc.getAnArgument() and
        n2.asExpr() = fc
    )
}

// Identify member functions taking a tainted value and returning a taint, of the form
// qual.func(arg).
predicate argToCallStep(Function f) {
    f.getDeclaringType() instanceof StringLikeType and
    f.getAParameter().getType().getUnspecifiedType() instanceof AppendableToString and
    f.getType().getUnspecifiedType() instanceof StringLikeType
}

predicate argToCallStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
    argToCallStep(fc.getTarget()) and
    (
        // argument taints call result
        n1.asExpr() = fc.getAnArgument() and
        n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
        or
        // The argument taints the post-update node of the qualifier
        // or
        // the argument taints leftmost argument in the call chain
        n1.asExpr() = fc.getArgument(0) and
        exists(Expr found |
            leftmost(fc.getQualifier(), found) and
            n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = found
        )
    )
}

// Identify functions where a tainted qualifier taints the result.
// This includes qual.str() and stream << arg (which is stream::operator<<(arg))
//
// In the FunctionCall, not here, the qualifier is `this`.  Here, the declaring
// type is the later type of `this`.
// This covers chaining of methods.  e.g., foo << seek(10) << "hello" will chain
predicate qualifierToCallStep(Function f) {
    f.getDeclaringType() instanceof StringLikeType and
    f.getType().getUnspecifiedType() instanceof StringLikeType
}

// Tainted qualifier taints the call's result, e.g., qual.str()
predicate qualifierToCallStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
    qualifierToCallStep(fc.getTarget()) and
    (
        n1.asExpr() = fc.getQualifier() and
        n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
        or
        // Cover cases missing the PostUpdateNode, like oSS.str()
        n1.asExpr() = fc.getQualifier() and
        n2.asExpr() = fc
    )
}

// Find parameterized override of operator<<, typically of the form
// stream&  operator<<(stream&, AppendableToString)
predicate operatorAsFunctionStep(Function f) {
    not exists(f.getDeclaringType()) and
    f.getName() = "operator<<" and
    f.getParameter(0).getType().getUnspecifiedType() instanceof StringLikeType and
    f.getParameter(1).getType().getUnspecifiedType() instanceof AppendableToString and
    f.getType().getUnspecifiedType() instanceof StringLikeType
}

predicate operatorAsFunctionStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
    operatorAsFunctionStep(fc.getTarget()) and
    (
        // both arguments taint result
        n1.asExpr() = fc.getArgument(0) and
        n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
        or
        n1.asExpr() = fc.getArgument(1) and
        n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
        or
        // The second argument taints the post-update node of the first
        // or
        // the rightmost (second) argument also taints the leftmost argument at the
        // beginning of the call chain.
        // ( ( head << mid) << last)
        //      ^________________/
        //   \-left-------/
        n1.asExpr() = fc.getArgument(1) and
        exists(Expr found |
            leftmost(fc.getArgument(0), found) and
            n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = found
        )
    )
}

// For a FunctionCall chain like (((head << n1) << n2) << last),
// find `head` starting from `last`
//
// The rightmost argument also taints the leftmost argument at the
// beginning of the call chain.
// ( ( head << mid) << last)
//      ^________________/
//   \-left-------/
predicate leftmost(FunctionCall fc, Expr head) {
    //
    operatorAsFunctionStep(fc.getTarget()) and
    not fc.getArgument(0) instanceof FunctionCall and
    head = fc.getArgument(0)
    or
    //
    (argToCallStep(fc.getTarget()) or qualifierToCallStep(fc.getTarget())) and
    not fc.getQualifier() instanceof FunctionCall and
    head = fc.getQualifier()
    or
    //
    leftmost(fc.getArgument(0), head)
    or
    leftmost(fc.getQualifier(), head)
}

// Propagate values from an array to an element access, `a` taints `a[i]`
predicate elementAccessStep(DataFlow::Node n1, DataFlow::Node n2, ArrayExpr a) {
    // arr -> arr[ind]
    n2.asExpr() = a and
    a.getArrayBase() = n1.asExpr()
}

// All the stl and bsl taint steps in a single predicate.
predicate stlBslTaintStep(DataFlow::Node n1, DataFlow::Node n2) {
    operatorAsFunctionStep(n1, n2, _) or
    qualifierToCallStep(n1, n2, _) or
    argToCallStep(n1, n2, _) or
    pureFuncArgToCallStep(n1, n2, _) or
    elementAccessStep(n1, n2, _)
}