32 KiB
CodeQL tutorial for C/C++: data flow and SQL injection
- Setup instructions
- Documentation links
- Problem statement
- Tutorial, part 1: sources and sinks
- Data flow overview
- Tutorial, part 2: data flow details
- Appendix
Setup instructions
To run CodeQL queries on dotnet/coreclr, follow these steps:
-
Install the Visual Studio Code IDE.
-
Download and install the CodeQL extension for Visual Studio Code. Full setup instructions are here.
-
- Important: Don't forget to
git clone --recursiveorgit submodule update --init --remote, so that you obtain the standard query libraries.
- Important: Don't forget to
-
Open the starter workspace: File > Open Workspace > Browse to
vscode-codeql-starter/vscode-codeql-starter.code-workspace. -
Download the sample database
codeql-dataflow-sql-injection-d5b28fb.zip -
Unzip the database.
-
Import the unzipped database into Visual Studio Code:
- Click the CodeQL icon in the left sidebar.
- Place your mouse over Databases, and click the + sign that appears on the right.
- Choose the unzipped database directory on your filesystem.
-
Create a new file, name it
SqliInjection.ql, save it undercodeql-custom-queries-cpp.
Documentation links
If you get stuck, try searching our documentation and blog posts for help and ideas. Below are a few links to help you get started:
Problem statement
Many security problems can be phrased in terms of information flow:
Given a (problem-specific) set of sources and sinks, is there a path in the data flow graph from some source to some sink?
The example we look at is SQL injection: sources are user-input, sinks are SQL queries processing a string formed at runtime.
When parts of the string can be specified by the user, they allow an attacker to insert arbitrary sql statements; these could erase a table or extract internal data etc.
We will use CodeQL to analyze the source code constructing a SQL
query using string concatenation and then executing that query
string. The following example uses the sqlite3 library and
- receives user-provided data from
stdin, - uses environment data in
id, - runs a query in
sqlite3_exec
This is intentionally simple code, but it has all the elements that have to be considered in real code and illustrates the QL features.
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <ctype.h>
#include <sqlite3.h>
#include <time.h>
void write_log(const char* fmt, ...);
void abort_on_error(int rc, sqlite3 *db);
void abort_on_exec_error(int rc, sqlite3 *db, char* zErrMsg);
char* get_user_info() {
#define BUFSIZE 1024
char* buf = (char*) malloc(BUFSIZE * sizeof(char));
int count;
// Disable buffering to avoid need for fflush
// after printf().
setbuf( stdout, NULL );
printf("*** Welcome to sql injection ***\n");
printf("Please enter name: ");
count = read(STDIN_FILENO, buf, BUFSIZE);
if (count <= 0) abort();
/* strip trailing whitespace */
while (count && isspace(buf[count-1])) {
buf[count-1] = 0; --count;
}
return buf;
}
int get_new_id() {
int id = getpid();
return id;
}
void write_info(int id, char* info) {
sqlite3 *db;
int rc;
int bufsize = 1024;
char *zErrMsg = 0;
char query[bufsize];
/* open db */
rc = sqlite3_open("users.sqlite", &db);
abort_on_error(rc, db);
/* Format query */
snprintf(query, bufsize, "INSERT INTO users VALUES (%d, '%s')", id, info);
write_log("query: %s\n", query);
/* Write info */
rc = sqlite3_exec(db, query, NULL, 0, &zErrMsg);
abort_on_exec_error(rc, db, zErrMsg);
sqlite3_close(db);
}
int main(int argc, char* argv[]) {
char* info;
int id;
info = get_user_info();
id = get_new_id();
write_info(id, info);
/*
* show_info(id);
*/
}
In terms of sources, sinks, and information flow, the concrete problem is:
- specifying
stdinas source using codeql, - specifying the
queryargument tosqlite3_exec()as sink, - specifying some code-specific data flow steps for the codeql library,
- using the codeql taint flow library find taint flow paths (if there are any) between the source and the sink.
In the following, we go into more concrete detail and develop codedql scripts to solve this problem.
Tutorial, part 1: running the code to see the problem
This program can be compiled and linked, and a simple sqlite db created via
# Build
./build.sh
# Prepare db
./admin rm-db
./admin create-db
./admin show-db
Users can be added via stdin in several ways; the second is a pretend "server"
using the echo command.
# Add regular user interactively
./add-user 2>> users.log
First User
# Regular user via "external" process
echo "User Outside" | ./add-user 2>> users.log
Check the db and log:
# Check
./admin show-db
tail -4 users.log
Looks ok:
0:$ ./admin show-db
87797|First User
87808|User Outside
0:$ tail -4 users.log
[Tue Jul 21 14:15:46 2020] query: INSERT INTO users VALUES (87797, 'First User')
[Tue Jul 21 14:17:07 2020] query: INSERT INTO users VALUES (87808, 'User Outside')
But there may be bad input; this one guesses the table name and drops it:
# Add Johnny Droptable
./add-user 2>> users.log
Johnny'); DROP TABLE users; --
And then we have this:
# And the problem:
./admin show-db
0:$ ./admin show-db
Error: near line 2: no such table: users
What happened? The log shows that data was treated as command:
1:$ tail -4 users.log
[Tue Jul 21 14:15:46 2020] query: INSERT INTO users VALUES (87797, 'First User')
[Tue Jul 21 14:17:07 2020] query: INSERT INTO users VALUES (87808, 'User Outside')
[Tue Jul 21 14:18:25 2020] query: INSERT INTO users VALUES (87817, 'Johnny'); DROP TABLE users; --')
Looking ahead, we now know that there is unsafe external data (source) which reaches (flow path) a database-writing command (sink). Thus, a query written against this code should find at least one taint flow path.
Tutorial, part 1: sources and sinks
The tutorial is split into several steps and introduces concepts as they are needed. Experimentation with the presented queries is encouraged, and the autocomplete suggestions (Ctrl + Space) and the jump-to-definition command (F12 in VS Code) are good ways explore the libraries.
Codeql recap
As quick test of your setup, import the ql cpp library and run the empty query
import cpp
select 1
We'll assume the import cpp is in the header of our query and not rewrite it
every time.
Now let's find the function executeStatement. In CodeQL, this uses Function
and a getName() attribute.
from Function f
where f.getName() = "executeStatement"
select f
This should find one result,
void executeStatement(const bsl::string &sQuery);
on line 5 of simple.cc
Call to SQL query execution (the data sink)
The brings us closer to our sql statement execution. This part of our problem is to identify the call
executeStatement(sQuery);
and choosing the argument to executeStatement() as sink. Let's start with the
call.
We really need the function call, not the function definition. Also, a call has no name; it does have a target (the function), which has a name as we saw above.
To combine these, use the auto-completion. After typing Function<tab>, we see a
list including FunctionCall; we can start with
from FunctionCall fc
where fc.<tab>
Now, we are looking for the call's *target*; completion shows getTarget(),
and we can finish that to
from FunctionCall fc
where fc.getTarget().getName() = "executeStatement"
select fc
Now that we have the function call, let's get the argument to it. We don't care
about the exact type of the argument, so an Expr is a good choice. Arguments
are part of the function call and using completion finds getArgument and some
others. Our query now becomes
from FunctionCall fc, Expr sink
where
fc.getTarget().getName() = "executeStatement" and
fc.getArgument(0) = sink
select fc, sink
and it finds the call and the argument:
1 call to executeStatement sQuery
For reuse, we can turn this into a predicate. Contents of from become arguments
to the predicate, the where becomes the body, the select is dropped:
predicate sqliSink(FunctionCall fc, Expr sink) {
fc.getTarget().getName() = "executeStatement" and
fc.getArgument(0) = sink
}
from FunctionCall fc, Expr sink
where sqliSource(fc, sink)
select fc, sink
This successfully identifies our (potentially) unsafe use of a string in a SQL query.
Non-constant query strings and untrusted data (the data source)
If we consider what we mean by "non-constant" strings and untrusted data, what we really care about is whether an attacker can provide (part of) the query string.
Thus, before we get into the the full dataflow details, let's identify the sources
of problematic data. This part of our problem is to identify (at least) argv,
iUUID, and sObjectName as sources. For this example, all variables
represent values that would ordinarily come from external sources and are thus
untrusted. This simplifies our query; we can simply identify uses of variables as
taint sources.
A Variable refers to a definition; with completion we find VariableAccess,
which is what we want. Further, we don't care about variables in libraries, only
in the main program. Put together, this query lists 12 results, including
destructor calls for some of the variables:
from VariableAccess va
where va.getLocation().getFile().getShortName() = "simple"
select va, va.getTarget() as definition
Note that our query structure will extend to more complex cases lateron; only the source identification will need updating.
Data flow overview
In the previous sections we identified the sources of problematic strings
(accesses of iUUID etc.), and the sink that their data may flow to (the argument
to executeStatement)
We need to see if there is data flow between the source(s) and this sink.
The solution here is to use the data flow library. Data flow is, as the name suggests, about tracking the flow of data through the program. It helps answers questions like: does this expression ever hold a value that originates from a particular other place in the program?
We can visualize the data flow problem as one of finding paths through a directed graph, where the nodes of the graph are elements in program, and the edges represent the flow of data between those elements. If a path exists, then the data flows between those two nodes.
Consider this example C function:
int func(int tainted) {
int x = tainted;
if (someCondition) {
int y = x;
callFoo(y);
} else {
return x;
}
return -1;
}
The data flow graph for this function will look something like this:
This graph represents the flow of data from the tainted parameter. The nodes of graph represent program elements that have a value, such as function parameters and expressions. The edges of this graph represent flow through these nodes.
There are two variants of data flow available in CodeQL:
- Local (“intra-procedural”) data flow models flow within one function; feasible to compute for all functions in a CodeQL database.
- Global (“inter-procedural”) data flow models flow across function calls; not feasible to compute for all functions in a CodeQL database.
While local data flow is feasible to compute for all functions in a CodeQL database, global data flow is not. This is because the number of paths becomes exponentially larger for global data flow.
The global data flow (and taint tracking) library avoids this problem by requiring that the query author specifies which sources and sinks are applicable. This allows the implementation to compute paths only between the restricted set of nodes, rather than for the full graph.
To use global data flow and taint tracking we need to
- a taint flow configuration
- use path queries
- add extra taint steps for taint flow
These are done next.
Taint flow configuration
The way we configure global data flow is by creating a custom extension of the
TaintTracking::Configuration class, and speciyfing isSource, isSink, and
isAdditionalTaintStep predicates. A starting configuration can look like the
following, with details to follow.
class SqliFlowConfig extends TaintTracking::Configuration {
SqliFlowConfig() { this = "SqliFlow" }
override predicate isSource(DataFlow::Node source) {
// Use sqliSourceProduction(this, source) in that case
sqliSourceDemo(source)
}
override predicate isAdditionalTaintStep(DataFlow::Node n1, DataFlow::Node n2) {
stlBslTaintStep(n1, n2)
}
override predicate isSanitizer(DataFlow::Node sanitizer) { none() }
override predicate isSink(DataFlow::Node sink) { sqliSink(sink, _) }
}
TaintTracking::Configuration is a configuration class. In this case, there will be
a single instance of the class, identified by a unique string specified in the
characteristic predicate. We then override the isSource predicates to represent
the set of possible sources in the program, and isSink to represent the possible
set of sinks in the program.
Path problem setup
Taint flow queries will only list sources and sinks by default. To inspect these results and work with them, we also need the data paths from source to sink. For this, the query needs to have the form of path problem query.
This requires a modifications to the query header and an extra import:
- The
@kindcomment has to bepath-problem. This tells the CodeQL toolchain to interpret the results of this query as path results. - Add a new import
DataFlow::PathGraph, which will report the path data alongside the query results.
Together, this looks like
/**
* @name SQLI Vulnerability
* @description Building a sql query dynamically may lead to sql injection vulnerability
* @kind path-problem
* @id cpp/SQLIVulnerable
* @problem.severity warning
*/
import semmle.code.cpp.dataflow.TaintTracking
import semmle.code.cpp.models.implementations.Pure
import DataFlow::PathGraph
Path problem query format
To use this new configuration and path-problem class we call the
hasFlowPath(source, sink) predicate, which will compute a reachability table
between the defined sources and sinks. Behind the scenes, you can think of this as
performing a graph search algorithm from sources to sinks. The query will look
like this:
from SqliFlowConfig conf, DataFlow::PathNode source, DataFlow::PathNode sink
where
// Flow path setup
conf.hasFlowPath(source, sink) and
source != sink
select sink, source, sink, "Sqli flow from $@", source, "source"
Tutorial, part 2: data flow details
With the dataflow configuration in place, we just need to provide the details for source(s), sink(s), and taint step(s).
isSource predicate
Recall the query we have to find variable accesses:
from VariableAccess va
where va.getLocation().getFile().getShortName() = "simple"
select va, va.getTarget() as definition
This query uses the structural information from VariableAccess. For taint flow,
we use a DataFlow::Node nd.
This is a direct conversion:
- to get a
VariableAccessfrom aNode, usenode.asExprto get anExpr - and then narrow the
ExprtoVariableAccess - the location information is also available from the
Node nd
Together, this gives us
import cpp
import semmle.code.cpp.dataflow.TaintTracking
from DataFlow::Node nd
where
nd.asExpr() instanceof VariableAccess and
nd.getLocation().getFile().getShortName() = "simple"
select nd
In the TaintTracking configuration, we use
sqliSourceDemo(source)
so we convert to a predicate:
predicate sqliSourceDemo(DataFlow::Node nd) {
// variable use
nd.asExpr() instanceof VariableAccess and
nd.getLocation().getFile().getShortName() = "simple"
}
This source definition is good for our example but needs adjustment for larger
codebases. See sqliSourceProduction in the appendix for an adjusted version.
isSink predicate
We have identified arguments to the executeStatement
function previously via the query
from FunctionCall fc, Expr sink
where
fc.getTarget().getName() = "executeStatement" and
fc.getArgument(0) = sink
select fc, sink
This query uses the structural information from FunctionCall and Expr. The
FunctionCall is needed for the query, but not for the configuration; this is the
reason for using the "don't care" operator, _ in the configuration:
sqliSink(sink, _)
The first argument to the predicate is DataFlow::Node, our query has an Expr.
As above, the direct conversion from Node to Expr is done via
nd.asExpr(). Changing from sink to nd in the query gives
from DataFlow::Node nd, FunctionCall fc
where
fc.getTarget().getName() = "executeStatement" and
fc.getArgument(0) = nd.asExpr()
select fc, nd
For use as a dataflow sink, we need this as a predicate:
predicate sqliSink(DataFlow::Node nd, FunctionCall fc) {
fc.getTarget().getName() = "executeStatement" and
fc.getArgument(0) = nd.asExpr()
}
Additional data flow features: the isAdditionalTaintStep predicate
Data flow and taint tracking configuration classes support a number of additional features that help configure the process of building and exploring the data flow path.
One such feature is adding additional taint steps. This is useful if you use
libraries which are not modelled by the default taint tracking. You can implement
this by overriding isAdditionalTaintStep predicate. This has two parameters, the
from and the to node, and essentially allows you to add extra edges into the
taint tracking or data flow graph.
For this tutorial, we have provided several predicates that track string and integer
taint flow across stl and bsl functions. They are listed in the appendix
bslstrings library; here we will use them as library functions via the single
predicate
stlBslTaintStep(n1, n2)
Complete query
Using the previous predicates
sqliSourceDemo(source)
sqliSink(sink, _)
stlBslTaintStep(n1, n2)
our full query is now
/**
* @name SQLI Vulnerability
* @description Building a sql query dynamically may lead to sql injection vulnerability
* @kind path-problem
* @id cpp/SQLIVulnerable
* @problem.severity warning
*/
import semmle.code.cpp.dataflow.TaintTracking
import semmle.code.cpp.models.implementations.Pure
import DataFlow::PathGraph
/**
* The taint tracking configuration
*/
class SqliFlowConfig extends TaintTracking::Configuration {
SqliFlowConfig() { this = "SqliFlow" }
override predicate isSource(DataFlow::Node source) {
// Use sqliSourceProduction(this, source) in that case
sqliSourceDemo(source)
}
override predicate isAdditionalTaintStep(DataFlow::Node n1, DataFlow::Node n2) {
stlBslTaintStep(n1, n2)
}
override predicate isSanitizer(DataFlow::Node sanitizer) { none() }
override predicate isSink(DataFlow::Node sink) { sqliSink(sink, _) }
}
/*
* The main query
*/
from SqliFlowConfig conf, DataFlow::PathNode source, DataFlow::PathNode sink, string label
where
// Flow path setup
conf.hasFlowPath(source, sink) and
source != sink and
if source.getNode().asExpr().(VariableAccess).getTarget().hasName(_)
then label = source.getNode().asExpr().(VariableAccess).getTarget().getName()
else label = "source"
select sink, source, sink, "Sqli flow from $@", source, label
Appendix
This appendix has the C++ test source, the bslstrings query, and the bslstrings library. The latter are in one file for convenience.
Test case: simple.cc
#include <bslstl_string.h>
#include <bslstl_stringstream.h>
void executeStatement(const bsl::string &sQuery);
int checkClusterSQL(const bsl::string &sDatabase, const bsl::string &sQuery,
const bsl::string &sObjectName);
int main(int argc, char **argv) {
bsl::stringstream oSS;
// Local constants
int iUUID = 123;
bsl::string sObjectName("HELLO");
// User-supplied iLevel
int iLevel = std::stol(argv[1]);
oSS << "SELECT object_name_upper, object_value_name_upper "
<< "FROM pvfx_privilege "
<< "WHERE uuid=" << iUUID << " "
<< "AND object_name_upper=\"" << sObjectName << "\" "
<< "AND pvf_function=\"" << "sFunction" << "\" "
<< "AND pvf_level=" << iLevel;
bsl::string sQuery(oSS.str());
int iErrorCode = checkClusterSQL("pvfxdb", sQuery, sObjectName);
// a_cdb2::SqlService sqlService("default");
// sqlService.executeStatement(sQuery);
executeStatement(sQuery);
}
bslstrings query and library: bslstrings.ql
The complete query is first, followed by the library components.
/**
* @name SQLI Vulnerability
* @description Building a sql query dynamically may lead to sql injection vulnerability
* @kind path-problem
* @id cpp/SQLIVulnerable
* @problem.severity warning
*/
import semmle.code.cpp.dataflow.TaintTracking
import semmle.code.cpp.models.implementations.Pure
import DataFlow::PathGraph
/**
* The taint tracking configuration
*/
class SqliFlowConfig extends TaintTracking::Configuration {
SqliFlowConfig() { this = "SqliFlow" }
override predicate isSource(DataFlow::Node source) {
// Use sqliSourceProduction(this, source) in that case
sqliSourceDemo(source)
}
override predicate isAdditionalTaintStep(DataFlow::Node n1, DataFlow::Node n2) {
stlBslTaintStep(n1, n2)
}
override predicate isSanitizer(DataFlow::Node sanitizer) { none() }
override predicate isSink(DataFlow::Node sink) { sqliSink(sink, _) }
}
/*
* The main query
*/
from SqliFlowConfig conf, DataFlow::PathNode source, DataFlow::PathNode sink, string label
where
// Flow path setup
conf.hasFlowPath(source, sink) and
source != sink and
if source.getNode().asExpr().(VariableAccess).getTarget().hasName(_)
then label = source.getNode().asExpr().(VariableAccess).getTarget().getName()
else label = "source"
select sink, source, sink, "Sqli flow from $@", source, label
// Identify the sink(s) for DataFlow
predicate sqliSink(DataFlow::Node nd, FunctionCall fc) {
fc.getTarget().getName() = "executeStatement" and
fc.getArgument(0) = nd.asExpr()
}
// Identify the source(s) for DataFlow; this version for the demonstration.
predicate sqliSourceDemo(DataFlow::Node nd) {
// variable use
nd.asExpr() instanceof VariableAccess and
nd.getLocation().getFile().getShortName() = "simple"
}
// Identify the source(s) for DataFlow; this version for full applications
predicate sqliSourceProduction(SqliFlowConfig config, DataFlow::Node source) {
// Approximates places where we concatenate a var with a string
source.asExpr() instanceof VariableAccess and
config.isAdditionalTaintStep(source, _) and
// These are the steps where we get an existing value out, so don't use as source.
not qualifierToCallStep(source, _, _) and
(
// We are reading a non-local variable (field, param, etc)
exists(Variable v |
source.asExpr().(VariableAccess).getTarget() = v and
not v instanceof LocalVariable
)
or
// We are reading a local, but something wrote to it since definition
exists(LocalVariable v, VariableAccess mid |
source.asExpr().(VariableAccess).getTarget() = v and
mid.getTarget() = v and
mid = v.getInitializer().getASuccessor+() and
source.asExpr() = mid.getASuccessor+()
)
)
}
/**
* Library routines. These are for more in-depth development.
*/
// argv is a Parameter and exists(DataFlow::Node n | n.asParameter() = e) holds
predicate whatsThere(Element e, string info, int line, string file) {
line = e.getLocation().getStartLine() and
line = [10] and
file = e.getLocation().getFile().getShortName() and
file.matches("%simple%") and
info = e.getAQlClass() and
exists(DataFlow::Node n | n.asParameter() = e)
}
// Basic type that represents a string for our purposes
class StringLikeType extends Type {
StringLikeType() {
this.getName().matches("%string%") or
this.getName().matches("%stream%") or
this.(ReferenceType).getBaseType() instanceof StringLikeType
}
}
// Capture all types that may be used to form or append to a string.
class AppendableToString extends Type {
AppendableToString() {
this instanceof StringLikeType or
this instanceof CharPointerType or
this instanceof IntegralType
}
}
// Identify pure, non-member functions taking a tainted value and returning a taint, of the form
// val = func(arg). Avoids overlap with instance-modifying members and generic functions.
predicate pureFuncArgToCallStep(Function f) {
not f.isMember() and
(
f instanceof PureStrFunction or
f.getName() = "stol"
) and
f.getAParameter().getType().getUnspecifiedType() instanceof AppendableToString and
f.getType().getUnspecifiedType() instanceof AppendableToString
}
predicate pureFuncArgToCallStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
pureFuncArgToCallStep(fc.getTarget()) and
(
// argument taints call result. Note that pure functions don't have PostUpdateNodes
n1.asExpr() = fc.getAnArgument() and
n2.asExpr() = fc
)
}
// Identify member functions taking a tainted value and returning a taint, of the form
// qual.func(arg).
predicate argToCallStep(Function f) {
f.getDeclaringType() instanceof StringLikeType and
f.getAParameter().getType().getUnspecifiedType() instanceof AppendableToString and
f.getType().getUnspecifiedType() instanceof StringLikeType
}
predicate argToCallStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
argToCallStep(fc.getTarget()) and
(
// argument taints call result
n1.asExpr() = fc.getAnArgument() and
n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
or
// The argument taints the post-update node of the qualifier
// or
// the argument taints leftmost argument in the call chain
n1.asExpr() = fc.getArgument(0) and
exists(Expr found |
leftmost(fc.getQualifier(), found) and
n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = found
)
)
}
// Identify functions where a tainted qualifier taints the result.
// This includes qual.str() and stream << arg (which is stream::operator<<(arg))
//
// In the FunctionCall, not here, the qualifier is `this`. Here, the declaring
// type is the later type of `this`.
// This covers chaining of methods. e.g., foo << seek(10) << "hello" will chain
predicate qualifierToCallStep(Function f) {
f.getDeclaringType() instanceof StringLikeType and
f.getType().getUnspecifiedType() instanceof StringLikeType
}
// Tainted qualifier taints the call's result, e.g., qual.str()
predicate qualifierToCallStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
qualifierToCallStep(fc.getTarget()) and
(
n1.asExpr() = fc.getQualifier() and
n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
or
// Cover cases missing the PostUpdateNode, like oSS.str()
n1.asExpr() = fc.getQualifier() and
n2.asExpr() = fc
)
}
// Find parameterized override of operator<<, typically of the form
// stream& operator<<(stream&, AppendableToString)
predicate operatorAsFunctionStep(Function f) {
not exists(f.getDeclaringType()) and
f.getName() = "operator<<" and
f.getParameter(0).getType().getUnspecifiedType() instanceof StringLikeType and
f.getParameter(1).getType().getUnspecifiedType() instanceof AppendableToString and
f.getType().getUnspecifiedType() instanceof StringLikeType
}
predicate operatorAsFunctionStep(DataFlow::Node n1, DataFlow::Node n2, FunctionCall fc) {
operatorAsFunctionStep(fc.getTarget()) and
(
// both arguments taint result
n1.asExpr() = fc.getArgument(0) and
n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
or
n1.asExpr() = fc.getArgument(1) and
n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = fc
or
// The second argument taints the post-update node of the first
// or
// the rightmost (second) argument also taints the leftmost argument at the
// beginning of the call chain.
// ( ( head << mid) << last)
// ^________________/
// \-left-------/
n1.asExpr() = fc.getArgument(1) and
exists(Expr found |
leftmost(fc.getArgument(0), found) and
n2.(DataFlow::PostUpdateNode).getPreUpdateNode().asExpr() = found
)
)
}
// For a FunctionCall chain like (((head << n1) << n2) << last),
// find `head` starting from `last`
//
// The rightmost argument also taints the leftmost argument at the
// beginning of the call chain.
// ( ( head << mid) << last)
// ^________________/
// \-left-------/
predicate leftmost(FunctionCall fc, Expr head) {
//
operatorAsFunctionStep(fc.getTarget()) and
not fc.getArgument(0) instanceof FunctionCall and
head = fc.getArgument(0)
or
//
(argToCallStep(fc.getTarget()) or qualifierToCallStep(fc.getTarget())) and
not fc.getQualifier() instanceof FunctionCall and
head = fc.getQualifier()
or
//
leftmost(fc.getArgument(0), head)
or
leftmost(fc.getQualifier(), head)
}
// Propagate values from an array to an element access, `a` taints `a[i]`
predicate elementAccessStep(DataFlow::Node n1, DataFlow::Node n2, ArrayExpr a) {
// arr -> arr[ind]
n2.asExpr() = a and
a.getArrayBase() = n1.asExpr()
}
// All the stl and bsl taint steps in a single predicate.
predicate stlBslTaintStep(DataFlow::Node n1, DataFlow::Node n2) {
operatorAsFunctionStep(n1, n2, _) or
qualifierToCallStep(n1, n2, _) or
argToCallStep(n1, n2, _) or
pureFuncArgToCallStep(n1, n2, _) or
elementAccessStep(n1, n2, _)
}