Files
mrvacommander/doc/mrva-overview.tex
2025-04-09 18:23:20 -07:00

606 lines
24 KiB
TeX
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\documentclass[11pt]{article}
% Load the geometry package to set margins
\usepackage[lmargin=2cm,rmargin=2cm,tmargin=1.8cm,bmargin=1.8cm]{geometry}
% increase nesting depth
\usepackage{enumitem}
\setlistdepth{9}
%
\renewlist{itemize}{itemize}{9}
\setlist[itemize,1]{label=\textbullet}
\setlist[itemize,2]{label=--}
\setlist[itemize,3]{label=*}
\setlist[itemize,4]{label=•}
\setlist[itemize,5]{label=}
\setlist[itemize,6]{label=>}
\setlist[itemize,7]{label=»}
\setlist[itemize,8]{label=}
\setlist[itemize,9]{label=·}
%
\renewlist{enumerate}{enumerate}{9}
\setlist[enumerate,1]{label=\arabic*.,ref=\arabic*}
\setlist[enumerate,2]{label=\alph*.),ref=\theenumi\alph*}
\setlist[enumerate,3]{label=\roman*.),ref=\theenumii\roman*}
\setlist[enumerate,4]{label=\Alph*.),ref=\theenumiii\Alph*}
\setlist[enumerate,5]{label=\Roman*.),ref=\theenumiv\Roman*}
\setlist[enumerate,6]{label=\arabic*),ref=\theenumv\arabic*}
\setlist[enumerate,7]{label=\alph*),ref=\theenumvi\alph*}
\setlist[enumerate,8]{label=\roman*),ref=\theenumvii\roman*}
\setlist[enumerate,9]{label=\Alph*),ref=\theenumviii\Alph*}
% Load CM Bright for math
\usepackage{amsmath} % Standard math package
\usepackage{amssymb} % Additional math symbols
\usepackage{cmbright} % Sans-serif math font that complements Fira Sans
\usepackage{fourier}
% Font configuration
% \usepackage{bera}
% or
% Load Fira Sans for text
\usepackage{fontspec}
\setmainfont{Fira Sans} % System-installed Fira Sans
\renewcommand{\familydefault}{\sfdefault} % Set sans-serif as default
% pseudo-code with math
\usepackage{listings}
\usepackage{float}
\usepackage{xcolor}
\usepackage{colortbl}
% Set TT font
% \usepackage{inconsolata}
% or
\setmonofont{IBMPlexMono-Light}
% Define custom settings for listings
\lstset{
language=Python,
basicstyle=\ttfamily\small, % Monospaced font
commentstyle=\itshape\color{gray}, % Italic and gray for comments
keywordstyle=\color{blue}, % Keywords in blue
stringstyle=\color{red}, % Strings in red
mathescape=true, % Enable math in comments
breaklines=true, % Break long lines
numbers=left, % Add line numbers
numberstyle=\tiny\color{gray}, % Style for line numbers
frame=single, % Add a frame around the code
}
\usepackage{newfloat} % Allows creating custom float types
% Define 'listing' as a floating environment
\DeclareFloatingEnvironment[
fileext=lol,
listname=List of Listings,
name=Listing
]{listing}
% To prevent floats from moving past a section boundary but still allow some floating:
\usepackage{placeins}
% used with \FloatBarrier
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{graphicx}
\usepackage{longtable}
\usepackage{wrapfig}
\usepackage{rotating}
\usepackage[normalem]{ulem}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{capt-of}
\usepackage{hyperref}
\usepackage{algorithm}
\usepackage{algpseudocode}
% Title, Author, and Date (or Report Number)
\title{MRVA for CodeQL}
\author{Michael Hohn}
\date{Technical Report 20250224}
\hypersetup{
pdfauthor={Michael Hohn},
pdftitle={MRVA for CodeQL},
pdfkeywords={},
pdfsubject={},
pdfcreator={Emacs 29.1},
pdflang={English}}
\begin{document}
\maketitle
\tableofcontents
\section{MRVA System Architecture Summary}
The MRVA system is organized as a collection of services. On the server side, the
system is containerized using Docker and comprises several key components:
\begin{itemize}
\item {\textbf{Server}}: Acts as the central coordinator.
\item \textbf{Agents}: One or more agents that execute tasks.
\item \textbf{RabbitMQ}: Handles messaging between components.
\item \textbf{MinIO}: Provides storage for both queries and results.
\item \textbf{HEPC}: An HTTP endpoint that hosts and serves CodeQL databases.
\end{itemize}
On the client side, users can interact with the system in two ways:
\begin{itemize}
\item {\textbf{VSCode-CodeQL}}: A graphical interface integrated with Visual Studio Code.
\item \textbf{gh-mrva CLI}: A command-line interface that connects to the server in a similar way.
\end{itemize}
This architecture enables a robust and flexible workflow for code analysis, combining a containerized back-end with both graphical and CLI front-end tools.
The full system details can be seen in the source code. This document provides an
overview.
\section{Distributed Query Execution in MRVA}
\subsection{Execution Overview}
The \textit{MRVA system} is a distributed platform for executing \textit{CodeQL
queries} across multiple repositories using a set of worker agents. The system is
{containerized} and built around a set of core services:
\begin{itemize}
\item \textbf{Server}: Coordinates job distribution and result aggregation.
\item \textbf{Agents}: Execute queries independently and return results.
\item \textbf{RabbitMQ}: Handles messaging between system components.
\item \textbf{MinIO}: Stores query inputs and execution results.
\item \textbf{HEPC}: Serves CodeQL databases over HTTP.
\end{itemize}
Clients interact with MRVA via \texttt{VSCode-CodeQL} (a graphical interface) or
\texttt{gh-mrva CLI} (a command-line tool), both of which submit queries to the
server.
The execution process follows a structured workflow:
\begin{enumerate}
\item A client submits a set of queries $\mathcal{Q}$ targeting a repository
set $\mathcal{R}$.
\item The server enqueues jobs and distributes them to available agents.
\item Each agent retrieves a job, executes queries against its assigned repository, and accumulates results.
\item The agent sends results back to the server, which then forwards them to the client.
\end{enumerate}
This full round-trip can be expressed as:
\begin{equation}
\text{Client} \xrightarrow{\mathcal{Q}} \text{Server}
\xrightarrow{\text{enqueue}}
\text{Queue} \xrightarrow{\text{dispatch}} \text{Agent}
\xrightarrow{\mathcal{Q}(\mathcal{R}_i)}
\text{Server} \xrightarrow{\mathcal{Q}(\mathcal{R}_i} \text{Client}
\end{equation}
where the Client submits queries to the Server, which enqueues jobs in the
Queue. Agents execute the queries, returning results $\mathcal{Q}(\mathcal{R}_i)$
to the Server and ultimately back to the Client.
A more rigorous description of this is in section \ref{sec:full-round-trip}.
\subsection{System Structure Overview}
This design allows for scalable and efficient query execution across multiple
repositories, whether on a single machine or a distributed cluster. The key idea
is that both setups follow the same structural approach:
\begin{itemize}
\item \textbf{Single machine setup:}
\begin{itemize}
\item Uses \textit{at least 5 Docker containers} to manage different
components of the system.
\item The number of \textit{agent containers} (responsible for executing
queries) is constrained by the available \textit{RAM and CPU cores}.
\end{itemize}
\item \textbf{Cluster setup:}
\begin{itemize}
\item Uses \textit{at least 5 virtual machines (VMs) and / or Docker containers}.
\item The number of \textit{agent VMs} is limited by \textit{network bandwidth
and available resources} (e.g., distributed storage and inter-node communication
overhead).
\end{itemize}
\end{itemize}
Thus:
\begin{itemize}
\item The {functional architecture is identical} between the single-machine and cluster setups.
\item The {primary difference} is in \textit{scale}:
\begin{itemize}
\item A single machine is limited by \textit{local CPU and RAM}.
\item A cluster is constrained by \textit{network and inter-node coordination overhead} but allows for higher overall compute capacity.
\end{itemize}
\end{itemize}
\subsection{Messages and their Types}
\label{sec:msg-types}
The following table enumerates the types (messages) passed from Client to Server.
\begin{longtable}{|p{5cm}|p{5cm}|p{5cm}|}
\hline
\rowcolor{gray!20} \textbf{Type Name} & \textbf{Field} & \textbf{Type} \\
\hline
\endfirsthead
\hline
\rowcolor{gray!20} \textbf{Type Name} & \textbf{Field} & \textbf{Type} \\
\hline
\endhead
\hline
\endfoot
\hline
\endlastfoot
ServerState & NextID & () $\rightarrow$ int \\
& GetResult & JobSpec $\rightarrow$ IO (Either Error AnalyzeResult) \\
& GetJobSpecByRepoId & (int, int) $\rightarrow$ IO (Either Error JobSpec) \\
& SetResult & (JobSpec, AnalyzeResult) $\rightarrow$ IO () \\
& GetJobList & int $\rightarrow$ IO (Either Error \textbf{[AnalyzeJob]}) \\
& GetJobInfo & JobSpec $\rightarrow$ IO (Either Error JobInfo) \\
& SetJobInfo & (JobSpec, JobInfo) $\rightarrow$ IO () \\
& GetStatus & JobSpec $\rightarrow$ IO (Either Error Status) \\
& SetStatus & (JobSpec, Status) $\rightarrow$ IO () \\
& AddJob & AnalyzeJob $\rightarrow$ IO () \\
\hline
JobSpec & sessionID & int \\
& nameWithOwner & string \\
\hline
AnalyzeResult & spec & JobSpec \\
& status & Status \\
& resultCount & int \\
& resultLocation & ArtifactLocation \\
& sourceLocationPrefix & string \\
& databaseSHA & string \\
\hline
ArtifactLocation & Key & string \\
& Bucket & string \\
\hline
AnalyzeJob & Spec & JobSpec \\
& QueryPackLocation & ArtifactLocation \\
& QueryLanguage & QueryLanguage \\
\hline
QueryLanguage & & string \\
\hline
JobInfo & QueryLanguage & string \\
& CreatedAt & string \\
& UpdatedAt & string \\
& SkippedRepositories & SkippedRepositories \\
\hline
SkippedRepositories & AccessMismatchRepos & AccessMismatchRepos \\
& NotFoundRepos & NotFoundRepos \\
& NoCodeqlDBRepos & NoCodeqlDBRepos \\
& OverLimitRepos & OverLimitRepos \\
\hline
AccessMismatchRepos & RepositoryCount & int \\
& Repositories & \textbf{[Repository]} \\
\hline
NotFoundRepos & RepositoryCount & int \\
& RepositoryFullNames & \textbf{[string]} \\
\hline
Repository & ID & int \\
& Name & string \\
& FullName & string \\
& Private & bool \\
& StargazersCount & int \\
& UpdatedAt & string \\
\end{longtable}
\section{Symbols and Notation}
\label{sec:orgb695d5a}
We define the following symbols for entities in the system:
\begin{center}
\begin{tabular}{lll}
Concept & Symbol & Description \\[0pt]
\hline
\href{vscode://file//Users/hohn/work-gh/mrva/gh-mrva/README.org:39:1}{Client} & \(C\) & The source of the query submission \\[0pt]
Server & \(S\) & Manages job queue and communicates results back to the client \\[0pt]
Job Queue & \(Q\) & Queue for managing submitted jobs \\[0pt]
Agent & \(\alpha\) & Independently polls, executes jobs, and accumulates results \\[0pt]
Agent Set & \(A\) & The set of all available agents \\[0pt]
Query Suite & \(\mathcal{Q}\) & Collection of queries submitted by the client \\[0pt]
Repository List & \(\mathcal{R}\) & Collection of repositories \\[0pt]
\(i\)-th Repository & \(\mathcal{R}_i\) & Specific repository indexed by \(i\) \\[0pt]
\(j\)-th Query & \(\mathcal{Q}_j\) & Specific query from the suite indexed by \(j\) \\[0pt]
Query Result & \(r_{i,j,k_{i,j}}\) & \(k_{i,j}\)-th result from query \(j\) executed on repository \(i\) \\[0pt]
Query Result Set & \(\mathcal{R}_i^{\mathcal{Q}_j}\) & Set of all results for query \(j\) on repository \(i\) \\[0pt]
Accumulated Results & \(\mathcal{R}_i^{\mathcal{Q}}\) & All results from executing all queries on \(\mathcal{R}_i\) \\[0pt]
\end{tabular}
\end{center}
\section{Full Round-Trip Representation}
\label{sec:full-round-trip}
The full round-trip execution, from query submission to result delivery, can be summarized as:
\[
C \xrightarrow{\mathcal{Q}} S \xrightarrow{\text{enqueue}} Q
\xrightarrow{\text{poll}}
\alpha \xrightarrow{\mathcal{Q}(\mathcal{R}_i)} S \xrightarrow{\mathcal{R}_i^{\mathcal{Q}}} C
\]
\begin{itemize}
\item \(C \to S\): Client submits a query suite \(\mathcal{Q}\) to the server.
\item \(S \to Q\): Server enqueues the query suite \((\mathcal{Q}, \mathcal{R}_i)\) for each repository.
\item \(Q \to \alpha\): Agent \(\alpha\) polls the queue and retrieves a job.
\item \(\alpha \to S\): Agent executes the queries and returns the accumulated results \(\mathcal{R}_i^{\mathcal{Q}}\) to the server.
\item \(S \to C\): Server sends the complete result set \(\mathcal{R}_i^{\mathcal{Q}}\) for each repository back to the client.
\end{itemize}
\section{Result Representation}
For the complete collection of results across all repositories and queries:
\[
\mathcal{R}^{\mathcal{Q}} = \bigcup_{i=1}^{N} \bigcup_{j=1}^{M}
\left\{ r_{i,j,1}, r_{i,j,2}, \dots, r_{i,j,k_{i,j}} \right\}
\]
where:
\begin{itemize}
\item \(N\) is the total number of repositories.
\item \(M\) is the total number of queries in \(\mathcal{Q}\).
\item \(k_{i,j}\) is the number of results from executing query
\(\mathcal{Q}_j\)
on repository \(\mathcal{R}_i\).
\end{itemize}
An individual result from the \(i\)-th repository, \(j\)-th query, and \(k\)-th result is:
\[
r_{i,j,k}
\]
\[
C \xrightarrow{\mathcal{Q}} S \xrightarrow{\text{enqueue}} Q \xrightarrow{\text{dispatch}} \alpha \xrightarrow{\mathcal{Q}(\mathcal{R}_i)} S \xrightarrow{r_{i,j}} C
\]
Each result can be further indexed to track multiple repositories and result sets.
\section{Execution Loop in Pseudo-Code}
\begin{listing}[H] % h = here, t = top, b = bottom, p = page of floats
\caption{Distributed Query Execution Algorithm}
\begin{lstlisting}[language=Python]
# Distributed Query Execution with Agent Polling and Accumulated Results
# Initialization
$\mathcal{R}$ = set() # Repository list
$Q$ = [] # Job queue
$A$ = set() # Set of agents
$\mathcal{R}_i^{\mathcal{Q}}$ = {} # Result storage for each repository
# Initialize result sets for each repository
for $R_i$ in $\mathcal{R}$:
$\mathcal{R}_i^{\mathcal{Q}} = \{\}$ # Initialize empty result set
# Enqueue the entire query suite for all repositories
for $R_i$ in $\mathcal{R}$:
$Q$.append(($\mathcal{Q}$, $R_i$)) # Enqueue $(\mathcal{Q}, \mathcal{R}_i)$ pair
# Processing loop while there are jobs in the queue
while $Q \neq \emptyset$:
# Agents autonomously poll the queue
for $\alpha$ in $A$:
if $\alpha$.is_available():
$(\mathcal{Q}, \mathcal{R}_i)$ = $Q$.pop(0) # Agent polls a job
# Agent execution begins
$\mathcal{R}_i^{\mathcal{Q}} = \{\}$ # Initialize results for repository $R_i$
for $\mathcal{Q}_j$ in $\mathcal{Q}$:
# Execute query $\mathcal{Q}_j$ on repository $\mathcal{R}_i$
$r_{i,j,1}, \dots, r_{i,j,k_{i,j}}$ = $\alpha$.execute($\mathcal{Q}_j$, $R_i$)
# Store results for query $j$
$\mathcal{R}_i^{\mathcal{Q}_j} = \{r_{i,j,1}, \dots, r_{i,j,k_{i,j}}\}$
# Accumulate results
$\mathcal{R}_i^{\mathcal{Q}} = \mathcal{R}_i^{\mathcal{Q}} \cup \mathcal{R}_i^{\mathcal{Q}_j}$
# Send all accumulated results back to the server
$\alpha$.send_results($S$, ($\mathcal{Q}$, $R_i$, $\mathcal{R}_i^{\mathcal{Q}}$))
# Server sends results for $(\mathcal{Q}, \mathcal{R}_i)$ back to the client
$S$.send_results_to_client($C$, ($\mathcal{Q}$, $R_i$, $\mathcal{R}_i^{\mathcal{Q}}$))
\end{lstlisting}
\end{listing}
\FloatBarrier
\section{Execution Loop in Pseudo-Code, declarative}
\begin{listing}[H] % h = here, t = top, b = bottom, p = page of floats
\caption{Distributed Query Execution Algorithm}
\begin{lstlisting}[language=Python]
# Distributed Query Execution with Agent Polling and Accumulated Results
# Define initial state
$\mathcal{R}$: set # Set of repositories
$\mathcal{Q}$: set # Set of queries
A: set # Set of agents
Q: list # Queue of $(\mathcal{Q}, \mathcal{R}_i)$ pairs
$\mathcal{R}_{\text{results}}$: dict = {} # Mapping of repositories to their accumulated query results
# Initialize result sets for each repository
$\mathcal{R}_{\text{results}}$ = {$\mathcal{R}_i$: set() for $\mathcal{R}_i$ in $\mathcal{R}$}
# Define job queue as an immutable mapping
Q = [($\mathcal{Q}$, $\mathcal{R}_i$) for $\mathcal{R}_i$ in $\mathcal{R}$]
# Processing as a declarative iteration over the job queue
def execute_queries(agents, job_queue, repository_results):
def available_agents():
return {$\alpha$ for $\alpha$ in agents if $\alpha$.is_available()}
def process_job($\mathcal{Q}$, $\mathcal{R}_i$, $\alpha$):
results = {$\mathcal{Q}_j$: $\alpha$.execute($\mathcal{Q}_j$, $\mathcal{R}_i$) for $\mathcal{Q}_j$ in $\mathcal{Q}$}
return $\mathcal{R}_i$, results
def accumulate_results($\mathcal{R}_{\text{results}}$, $\mathcal{R}_i$, query_results):
return {**$\mathcal{R}_{\text{results}}$, $\mathcal{R}_i$: $\mathcal{R}_{\text{results}}$[$\mathcal{R}_i$] | set().union(*query_results.values())}
while job_queue:
active_agents = available_agents()
for $\alpha$ in active_agents:
$\mathcal{Q}$, $\mathcal{R}_i$ = job_queue[0] # Peek at the first job
_, query_results = process_job($\mathcal{Q}$, $\mathcal{R}_i$, $\alpha$)
repository_results = accumulate_results(repository_results, $\mathcal{R}_i$, query_results)
$\alpha$.send_results(S, ($\mathcal{Q}$, $\mathcal{R}_i$, repository_results[$\mathcal{R}_i$]))
S.send_results_to_client(C, ($\mathcal{Q}$, $\mathcal{R}_i$, repository_results[$\mathcal{R}_i$]))
job_queue = job_queue[1:] # Move to the next job
return repository_results
# Execute the distributed query process
$\mathcal{R}_{\text{results}}$ = execute_queries(A, Q, $\mathcal{R}_{\text{results}}$)
\end{lstlisting}
\end{listing}
\FloatBarrier
\newpage{}
\section{Execution Loop in Pseudo-Code, algorithmic}
\begin{algorithm}
\caption{Distribute a set of queries $\mathcal{Q}$ across repositories
$\mathcal{R}$ using agents $A$}
\begin{algorithmic}[1] % Line numbering enabled
\Procedure{DistributedQueryExecution}{$\mathcal{Q}, \mathcal{R}, A$}
\ForAll{$\mathcal{R}_i \in \mathcal{R}$}
\Comment{Initialize result sets for each repository and query}
\State $\mathcal{R}_i^{\mathcal{Q}} \gets \left\{ \, \right\}$
\EndFor
\State $Q \gets \left\{ \, \right\}$ \Comment{Initialize empty job queue}
\ForAll{$\mathcal{R}_i \in \mathcal{R}$}
\Comment{Enqueue the entire query suite across all repositories}
\State $S \xrightarrow{\text{enqueue}(\mathcal{Q}, \mathcal{R}_i)} Q$
\EndFor
\While{$Q \neq \emptyset$}
\Comment{Agents poll the queue for available jobs}
\ForAll{$\alpha \in A$ \textbf{where} $\alpha$ \text{is available}}
\State $\alpha \xleftarrow{\text{poll}(Q)}$ \Comment{Agent autonomously retrieves a job}
% --- Begin Agent Execution Block ---
\State \textbf{\raisebox{0.5ex}{\rule{25em}{0.7pt}}} \Comment{Agent Execution Begins}
\State $\mathcal{R}_i^{\mathcal{Q}} \gets \left\{ \, \right\}$ \Comment{Initialize result set for this repository}
\ForAll{$\mathcal{Q}_j \in \mathcal{Q}$}
\State $\mathcal{R}_i^{\mathcal{Q}_j} \gets \left\{ r_{i,j,1}, r_{i,j,2}, \dots, r_{i,j,k_{i,j}} \right\}$
\Comment{Collect results for query $j$ on repository $i$}
\State $\mathcal{R}_i^{\mathcal{Q}} \gets \mathcal{R}_i^{\mathcal{Q}}
\cup \mathcal{R}_i^{\mathcal{Q}_j}$
\Comment{Accumulate results}
\EndFor
\State $\alpha \xrightarrow{(\mathcal{Q}, \mathcal{R}_i, \mathcal{R}_i^{\mathcal{Q}})} S$
\Comment{Agent sends all accumulated results back to server}
\State \textbf{\raisebox{0.5ex}{\rule{25em}{0.7pt}}} \Comment{Agent
Execution Ends}
% --- End Agent Execution Block ---
\State $S \xrightarrow{(\mathcal{Q}, \mathcal{R}_i, \mathcal{R}_i^{\mathcal{Q}})} C$
\Comment{Server sends results for repository $i$ back to the client}
\EndFor
\EndWhile
\EndProcedure
\end{algorithmic}
\end{algorithm}
\FloatBarrier
\section{Execution Loop in Pseudo-Code, hybrid}
\label{sec:orgb767ab2}
{\textbf{Algorithm:} Distribute a set of queries \(\mathcal{Q}\) across repositories \(\mathcal{R}\) using agents \(A\)}
\begin{enumerate}
\item \textbf{\textbf{Initialization}}
\begin{itemize}
\item For each repository \(\mathcal{R}_i \in \mathcal{R}\):
\begin{itemize}
\item Initialize result sets: \(\mathcal{R}_i^{\mathcal{Q}} \gets \{\}\).
\end{itemize}
\item Initialize an empty job queue: \(Q \gets \{\}\).
\end{itemize}
\item \textbf{\textbf{Enqueue Queries}}
\begin{itemize}
\item For each repository \(\mathcal{R}_i \in \mathcal{R}\):
\begin{itemize}
\item Enqueue the entire query suite: \(S \xrightarrow{\text{enqueue}(\mathcal{Q}, \mathcal{R}_i)} Q\).
\end{itemize}
\end{itemize}
\item \textbf{\textbf{Execution Loop}}
\begin{itemize}
\item While \(Q \neq \emptyset\): (agents poll the queue for available jobs)
\begin{itemize}
\item For each available agent \(\alpha \in A\):
\begin{itemize}
\item Agent autonomously retrieves a job: \(\alpha \xleftarrow{\text{poll}(Q)}\).
\item \textbf{\textbf{Agent Execution Block}}
\begin{itemize}
\item Initialize result set for this repository: \(\mathcal{R}_i^{\mathcal{Q}} \gets \{\}\).
\item For each query \(\mathcal{Q}_j \in \mathcal{Q}\):
\begin{itemize}
\item Collect results:
\(\mathcal{R}_i^{\mathcal{Q}_j} \gets \{ r_{i,j,1}, r_{i,j,2}, \dots, r_{i,j,k_{i,j}} \}\).
\item Accumulate results:
\(\mathcal{R}_i^{\mathcal{Q}} \gets \mathcal{R}_i^{\mathcal{Q}} \cup \mathcal{R}_i^{\mathcal{Q}_j}\).
\end{itemize}
\item Agent sends all accumulated results back to the server:
\(\alpha \xrightarrow{(\mathcal{Q}, \mathcal{R}_i, \mathcal{R}_i^{\mathcal{Q}})} S\).
\end{itemize}
\end{itemize}
\end{itemize}
\end{itemize}
\item \textbf{\textbf{Agent Sends Results}}
\begin{itemize}
\item Server sends results for repository \(i\) back to the client:
\(S \xrightarrow{(\mathcal{Q}, \mathcal{R}_i, \mathcal{R}_i^{\mathcal{Q}})} C\).
\end{itemize}
\end{enumerate}
\end{document}
%%% Local Variables:
%%% mode: LaTeX
%%% TeX-master: t
%%% TeX-engine: luatex
%%% TeX-command-extra-options: "-synctex=1 -shell-escape -interaction=nonstopmode"
%%% End: