{
"cells": [
{
"cell_type": "markdown",
"id": "e1c3b239-d45e-43f6-9d2d-64ee46e75e61",
"metadata": {},
"source": [
"1. Find available DBs\n",
"2. Save list\n",
"3. Refine selection\n",
"4. Save selection\n",
" 1. Generate `databases.json` for use in vs code extension\n",
" 2. Generate `list-databases.json` for use by gh-mrva client\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "042947ea-8514-4318-a768-7826e494dd43",
"metadata": {},
"outputs": [],
"source": [
"from db_load_fs import dbdf_from_tree"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "43a7f75f-c3ac-4e23-b30a-096f7119edf6",
"metadata": {},
"outputs": [],
"source": [
"df = dbdf_from_tree()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e13adbb1-c876-4712-a010-36983f6b56b6",
"metadata": {
"editable": true,
"scrolled": true,
"slideshow": {
"slide_type": ""
},
"tags": []
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-07-10 08:33:35 [DEBUG] /Users/hohn/work-gh/mrva/mrvacommander/client/venv/lib/python3.11/site-packages/ipykernel_launcher.py -f /Users/hohn/Library/Jupyter/runtime/kernel-8e934521-9e0d-469f-aa73-3fa1f8b9808a.json\n",
"2024-07-10 08:33:35 [DEBUG] Hostname: ghm3\n",
"2024-07-10 08:33:35 [DEBUG] pytest: False, flask-debug: False\n",
"2024-07-10 08:33:35 [DEBUG] pre-locking index columns ([]) to settings[2]\n",
"2024-07-10 08:33:35 [DEBUG] Starting new HTTP connection (1): ghm3:40000\n",
"2024-07-10 08:33:35 [DEBUG] http://ghm3:40000 \"GET /health HTTP/11\" 200 2\n",
"2024-07-10 08:33:35 [DEBUG] Starting new HTTP connection (1): ghm3:40000\n",
"2024-07-10 08:33:35 [DEBUG] http://ghm3:40000 \"GET /health HTTP/11\" 200 2\n"
]
},
{
"data": {
"text/html": [
"\n",
" \n",
" "
],
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
" import dtale\n",
" dtale.show(df)\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "29beb747-fbff-4bc9-b304-3d921ca0232b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[]], dtype=object)"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAHFCAYAAADsRsNYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAu9UlEQVR4nO3de1hVdd7//9dGBNRkIyqnMjykpqaSOhGWaSOJht4yY2MUGXWbNgXz1SxTr0kzs/BQaRrmdF8e6s5DWQqNlamYMiWpodyhOWblYTpsqBQRGhFh/f7ocv3ago7YRviwn4/rWtfsvT7vtdbnvVc0r9Zee2+HZVmWAAAADOJT1xMAAACoKQIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgyAeu2+++5T27Zt63oaAOoZAgwAADCOg99CAlCflZeXq7KyUv7+/nU9FQD1CAEGAAAYh7eQANSpkydPavz48Wrbtq38/f0VEhKi2267Tbt375ZU9R6YAQMGyOFwVLssX77crisqKtL48ePVpk0b+fv765prrtHs2bNVWVl5mTsEUBt863oCALzbn//8Z7311ltKTU1V165d9dNPP+mjjz7S/v371atXryr1f/3rX/XAAw+4rXv99df1wQcfKCQkRJL0888/q3///vr222/14IMP6uqrr9b27ds1ZcoUff/995o/f/7laA1ALeItJAB1KigoSPfcc49eeumlasfvu+8+bd26VYcPH652fPv27RowYIBGjRqlJUuWSJJmzpypWbNmac+ePerYsaNdO2XKFM2dO1eHDh1SmzZtPN4LgMuHt5AA1KmgoCDt2LFD3333XY23dblcuuOOOxQVFaVFixbZ69esWaN+/fqpRYsW+vHHH+0lNjZWFRUVys7O9mQLAOoAbyEBqFNz5sxRcnKy2rRpo969e+v222/Xvffeq/bt219wuzNnzmjkyJGqqKjQ2rVr3T6ldPDgQX322Wdq3bp1tdsWFhZ6tAcAlx8BBkCdGjlypPr166d169Zp48aNmjt3rmbPnq21a9dqyJAh591u4sSJysnJ0ebNm3XVVVe5jVVWVuq2227T448/Xu22nTp18mgPAC4/7oEBUK8UFhaqV69eatu2rT766KNq74FZvXq17rrrLs2fP1/jxo2rso9u3brJ6XRq+/btl3HmAC4n7oEBUGcqKip04sQJt3UhISGKiIhQWVlZtdvs3btXDzzwgO65555qw4v0y1WdnJwcffDBB1XGioqKdObMmd8+eQB1ireQANSZkydP6qqrrtIdd9yhnj176oorrtDmzZu1a9cuPf/889Vuc//990uSbrnlFr3++utuY3379lX79u01ceJEvfPOOxo6dKjuu+8+9e7dW6WlpcrPz9dbb72lw4cPq1WrVrXeH4DaQ4ABUGeaNm2qhx9+WBs3btTatWtVWVmpa665RosWLdJDDz1U7TY//PCDSktLNXbs2Cpjy5YtU/v27dW0aVNt27ZNzz77rNasWaPXXntNgYGB6tSpk5566ik5nc7abg1ALeMeGAAAYBzugQEAAMYhwAAAAOMQYAAAgHEIMAAAwDg1DjDZ2dkaNmyYIiIi5HA4lJGRYY+Vl5dr0qRJ6t69u5o1a6aIiAjde++9VX7j5NixY0pKSlJgYKCCgoI0evRolZSUuNV89tln6tevnwICAtSmTRvNmTPn0joEAAANTo0DTGlpqXr27Kn09PQqYz///LN2796tqVOnavfu3Vq7dq0OHDig//qv/3KrS0pK0r59+7Rp0yatX79e2dnZbh+JLC4u1qBBgxQZGanc3FzNnTtX06dP1yuvvHIJLQIAgAbH+g0kWevWrbtgzc6dOy1J1pEjRyzLsqzPP//ckmTt2rXLrnn//fcth8Nhffvtt5ZlWdaiRYusFi1aWGVlZXbNpEmTrM6dO9dobiwsLCwsLCzmLhdS6/fAnDhxQg6HQ0FBQZKknJwcBQUFqU+fPnZNbGysfHx8tGPHDrvmlltukZ+fn10TFxenAwcO6Pjx49Uep6ysTMXFxfYCAAAarloNMKdOndKkSZN01113KTAwUJLkcrkUEhLiVufr66vg4GC5XC67JjQ01K3m7POzNedKS0uT0+m0FwAA0HDV2k8JlJeXa+TIkbIsSy+//HJtHcY2ZcoUTZgwwX7+6xDz6xuNAQBA/ZWQkHBRdbUSYM6GlyNHjmjLli321RdJCgsLU2FhoVv9mTNndOzYMYWFhdk1BQUFbjVnn5+tOZe/v7/8/f2rHRs+fPgl93KuzMzMWtlvfeeNfXtjz5J39u2NPUve2bc39iw1zL49/hbS2fBy8OBBbd68WS1btnQbj4mJUVFRkXJzc+11W7ZsUWVlpaKjo+2a7OxslZeX2zWbNm1S586d1aJFC09PGQAAGKbGAaakpER5eXnKy8uTJB06dEh5eXk6evSoysvLdccdd+jTTz/VihUrVFFRIZfLJZfLpdOnT0uSunTposGDB2vMmDHauXOnPv74Y6WmpioxMVERERGSpLvvvlt+fn4aPXq09u3bpzfeeEMvvvii21tEAADAe9X4LaRPP/1Ut956q/38bKhITk7W9OnT9c4770iSoqKi3Lb78MMPNWDAAEnSihUrlJqaqoEDB8rHx0cjRozQggUL7Fqn06mNGzcqJSVFvXv3VqtWrTRt2jS374oBAADeq8YBZsCAAfrla1aqd6Gxs4KDg7Vy5coL1vTo0UP/+Mc/ajo9AADgBfgtJAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgnFr5NWpv0Xbyu/bjw7Pi63AmAAB4F67AAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYx7euJ9BQtJ38rtvzw7Pi62gmAAA0fFyBAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGqXGAyc7O1rBhwxQRESGHw6GMjAy3ccuyNG3aNIWHh6tJkyaKjY3VwYMH3WqOHTumpKQkBQYGKigoSKNHj1ZJSYlbzWeffaZ+/fopICBAbdq00Zw5c2reHQAAaJBqHGBKS0vVs2dPpaenVzs+Z84cLViwQIsXL9aOHTvUrFkzxcXF6dSpU3ZNUlKS9u3bp02bNmn9+vXKzs7W2LFj7fHi4mINGjRIkZGRys3N1dy5czV9+nS98sorl9AiAABoaGr8W0hDhgzRkCFDqh2zLEvz58/XE088oeHDh0uSXnvtNYWGhiojI0OJiYnav3+/NmzYoF27dqlPnz6SpIULF+r222/Xc889p4iICK1YsUKnT5/W0qVL5efnp27duikvL08vvPCCW9ABAADeyWFZlnXJGzscWrdunRISEiRJX3/9tTp06KA9e/YoKirKruvfv7+ioqL04osvaunSpXr00Ud1/Phxe/zMmTMKCAjQmjVr9Ic//EH33nuviouL3d6e+vDDD/X73/9ex44dU4sWLarMpaysTGVlZfZzp9NpPz73bS4AAFA/nc0U0i8XRs7HozfxulwuSVJoaKjb+tDQUHvM5XIpJCTEbdzX11fBwcFuNdXt49fHOFdaWpqcTqe9AACAhqvBfAppypQpOnHihL0AAICGq8b3wFxIWFiYJKmgoEDh4eH2+oKCAvstpbCwMBUWFrptd+bMGR07dszePiwsTAUFBW41Z5+frTmXv7+//P39qx07ez+OJ2RmZtqPx+Wc/+U7PCveY8esD37dtydfz/rMG3uWvLNvb+xZ8s6+vbFnqWH27dErMO3atVNYWJiysrLsdcXFxdqxY4diYmIkSTExMSoqKlJubq5ds2XLFlVWVio6Otquyc7OVnl5uV2zadMmde7cudr7XwAAgHepcYApKSlRXl6e8vLyJEmHDh1SXl6ejh49KofDofHjx2vmzJl65513lJ+fr3vvvVcRERH2TTldunTR4MGDNWbMGO3cuVMff/yxUlNTlZiYqIiICEnS3XffLT8/P40ePVr79u3TG2+8oRdffFETJkzwWOMAAMBcNX4L6dNPP9Wtt95qPz8bKpKTk7V8+XI9/vjjKi0t1dixY1VUVKSbb75ZGzZsUEBAgL3NihUrlJqaqoEDB8rHx0cjRozQggUL7HGn06mNGzcqJSVFvXv3VqtWrTRt2jQ+Qg0AACRdQoAZMGDABT/W5HA4NGPGDM2YMeO8NcHBwVq5cuUFj9OjRw/94x//qOn0AACAF2gwn0ICAADegwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADG8XiAqaio0NSpU9WuXTs1adJEHTp00NNPPy3Lsuway7I0bdo0hYeHq0mTJoqNjdXBgwfd9nPs2DElJSUpMDBQQUFBGj16tEpKSjw9XQAAYCCPB5jZs2fr5Zdf1ksvvaT9+/dr9uzZmjNnjhYuXGjXzJkzRwsWLNDixYu1Y8cONWvWTHFxcTp16pRdk5SUpH379mnTpk1av369srOzNXbsWE9PFwAAGMhh/frSiAcMHTpUoaGhWrJkib1uxIgRatKkiV5//XVZlqWIiAg9+uijeuyxxyRJJ06cUGhoqJYvX67ExETt379fXbt21a5du9SnTx9J0oYNG3T77bfrm2++UURERJXjlpWVqayszH7udDrtxxkZGZ5sEQAA1JKEhAT78YUiisevwPTt21dZWVn64osvJEn/93//p48++khDhgyRJB06dEgul0uxsbH2Nk6nU9HR0crJyZEk5eTkKCgoyA4vkhQbGysfHx/t2LGj2uOmpaXJ6XTaCwAAaLh8Pb3DyZMnq7i4WNdee60aNWqkiooKPfPMM0pKSpIkuVwuSVJoaKjbdqGhofaYy+VSSEiI+0R9fRUcHGzXnGvKlCmaMGGC/ZwQAwBAw+XxAPPmm29qxYoVWrlypbp166a8vDyNHz9eERERSk5O9vThbP7+/vL39692bPjw4R47TmZmpv14XM75X77Ds+I9dsz64Nd9e/L1rM+8sWfJO/v2xp4l7+zbG3uWGmbfHg8wEydO1OTJk5WYmChJ6t69u44cOaK0tDQlJycrLCxMklRQUKDw8HB7u4KCAkVFRUmSwsLCVFhY6LbfM2fO6NixY/b2AADAe3n8Hpiff/5ZPj7uu23UqJEqKyslSe3atVNYWJiysrLs8eLiYu3YsUMxMTGSpJiYGBUVFSk3N9eu2bJliyorKxUdHe3pKQMAAMN4/ArMsGHD9Mwzz+jqq69Wt27dtGfPHr3wwgv67//+b0mSw+HQ+PHjNXPmTHXs2FHt2rXT1KlTFRERYd953KVLFw0ePFhjxozR4sWLVV5ertTUVCUmJlb7CSQAAOBdPB5gFi5cqKlTp+rhhx9WYWGhIiIi9OCDD2ratGl2zeOPP67S0lKNHTtWRUVFuvnmm7VhwwYFBATYNStWrFBqaqoGDhwoHx8fjRgxQgsWLPD0dAEAgIE8HmCaN2+u+fPna/78+eetcTgcmjFjhmbMmHHemuDgYK1cudLT0wMAAA0Av4UEAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGqZUA8+233+qee+5Ry5Yt1aRJE3Xv3l2ffvqpPW5ZlqZNm6bw8HA1adJEsbGxOnjwoNs+jh07pqSkJAUGBiooKEijR49WSUlJbUwXAAAYxuMB5vjx47rpppvUuHFjvf/++/r888/1/PPPq0WLFnbNnDlztGDBAi1evFg7duxQs2bNFBcXp1OnTtk1SUlJ2rdvnzZt2qT169crOztbY8eO9fR0AQCAgXw9vcPZs2erTZs2WrZsmb2uXbt29mPLsjR//nw98cQTGj58uCTptddeU2hoqDIyMpSYmKj9+/drw4YN2rVrl/r06SNJWrhwoW6//XY999xzioiI8PS0AQCAQRyWZVme3GHXrl0VFxenb775Rtu2bdOVV16phx9+WGPGjJEkff311+rQoYP27NmjqKgoe7v+/fsrKipKL774opYuXapHH31Ux48ft8fPnDmjgIAArVmzRn/4wx+qHLesrExlZWX2c6fTaT/OyMjwZIsAAKCWJCQk2I8vFFE8/hbS119/rZdfflkdO3bUBx98oIceekj/7//9P7366quSJJfLJUkKDQ112y40NNQec7lcCgkJcRv39fVVcHCwXXOutLQ0OZ1OewEAAA2XxwNMZWWlevXqpWeffVbXX3+9xo4dqzFjxmjx4sWePpSbKVOm6MSJE/YCAAAaLo/fAxMeHq6uXbu6revSpYvefvttSVJYWJgkqaCgQOHh4XZNQUGB/ZZSWFiYCgsL3fZx5swZHTt2zN7+XP7+/vL396927Oy9Np6QmZlpPx6Xc/6X7/CseI8dsz74dd+efD3rM2/sWfLOvr2xZ8k7+/bGnqWG2bfHr8DcdNNNOnDggNu6L774QpGRkZJ+uaE3LCxMWVlZ9nhxcbF27NihmJgYSVJMTIyKioqUm5tr12zZskWVlZWKjo729JQBAIBhPH4F5pFHHlHfvn317LPPauTIkdq5c6deeeUVvfLKK5Ikh8Oh8ePHa+bMmerYsaPatWunqVOnKiIiwr5xp0uXLho8eLD91lN5eblSU1OVmJjIJ5AAAIDnA8zvfvc7rVu3TlOmTNGMGTPUrl07zZ8/X0lJSXbN448/rtLSUo0dO1ZFRUW6+eabtWHDBgUEBNg1K1asUGpqqgYOHCgfHx+NGDFCCxYs8PR0AQCAgTweYCRp6NChGjp06HnHHQ6HZsyYoRkzZpy3Jjg4WCtXrqyN6QEAAMPxW0gAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADBOrQeYWbNmyeFwaPz48fa6U6dOKSUlRS1bttQVV1yhESNGqKCgwG27o0ePKj4+Xk2bNlVISIgmTpyoM2fO1PZ0AQCAAWo1wOzatUt/+9vf1KNHD7f1jzzyiP7+979rzZo12rZtm7777jv98Y9/tMcrKioUHx+v06dPa/v27Xr11Ve1fPlyTZs2rTanCwAADOGwLMuqjR2XlJSoV69eWrRokWbOnKmoqCjNnz9fJ06cUOvWrbVy5UrdcccdkqR//vOf6tKli3JycnTjjTfq/fff19ChQ/Xdd98pNDRUkrR48WJNmjRJP/zwg/z8/Kocr6ysTGVlZfZzp9NpP87IyKiNFgEAgIclJCTYjy8UUWrtCkxKSori4+MVGxvrtj43N1fl5eVu66+99lpdffXVysnJkSTl5OSoe/fudniRpLi4OBUXF2vfvn3VHi8tLU1Op9NeAABAw1UrAWb16tXavXu30tLSqoy5XC75+fkpKCjIbX1oaKhcLpdd8+vwcnb87Fh1pkyZohMnTtgLAABouHw9vcN//etfGjdunDZt2qSAgABP7/68/P395e/vX+3Y8OHDPXaczMxM+/G4nPO/fIdnxXvsmPXBr/v25OtZn3ljz5J39u2NPUve2bc39iw1zL49fgUmNzdXhYWF6tWrl3x9feXr66tt27ZpwYIF8vX1VWhoqE6fPq2ioiK37QoKChQWFiZJCgsLq/KppLPPz9YAAADv5fEAM3DgQOXn5ysvL89e+vTpo6SkJPtx48aNlZWVZW9z4MABHT16VDExMZKkmJgY5efnq7Cw0K7ZtGmTAgMD1bVrV09PGQAAGMbjbyE1b95c1113ndu6Zs2aqWXLlvb60aNHa8KECQoODlZgYKD+8pe/KCYmRjfeeKMkadCgQeratatGjRqlOXPmyOVy6YknnlBKSsp53yYCAADew+MB5mLMmzdPPj4+GjFihMrKyhQXF6dFixbZ440aNdL69ev10EMPKSYmRs2aNVNycrJmzJhRF9MFAAD1zGUJMFu3bnV7HhAQoPT0dKWnp593m8jISL333nu1PDMAAGAifgsJAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4vnU9gYaq7eR3q6w7PCu+DmYCAEDDwxUYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDgEGAAAYBwCDAAAMA4BBgAAGMfjASYtLU2/+93v1Lx5c4WEhCghIUEHDhxwqzl16pRSUlLUsmVLXXHFFRoxYoQKCgrcao4ePar4+Hg1bdpUISEhmjhxos6cOePp6QIAAAN5PMBs27ZNKSkp+uSTT7Rp0yaVl5dr0KBBKi0ttWseeeQR/f3vf9eaNWu0bds2fffdd/rjH/9oj1dUVCg+Pl6nT5/W9u3b9eqrr2r58uWaNm2ap6cLAAAM5OvpHW7YsMHt+fLlyxUSEqLc3FzdcsstOnHihJYsWaKVK1fq97//vSRp2bJl6tKliz755BPdeOON2rhxoz7//HNt3rxZoaGhioqK0tNPP61JkyZp+vTp8vPz8/S0AQCAQRyWZVm1eYAvv/xSHTt2VH5+vq677jpt2bJFAwcO1PHjxxUUFGTXRUZGavz48XrkkUc0bdo0vfPOO8rLy7PHDx06pPbt22v37t26/vrrqxynrKxMZWVl9nOn02k/zsjIqI3WAACAhyUkJNiPLxRRavUm3srKSo0fP1433XSTrrvuOkmSy+WSn5+fW3iRpNDQULlcLrsmNDS0yvjZseqkpaXJ6XTaCwAAaLhqNcCkpKRo7969Wr16dW0eRpI0ZcoUnThxwl4AAEDD5fF7YM5KTU3V+vXrlZ2drauuuspeHxYWptOnT6uoqMjtKkxBQYHCwsLsmp07d7rt7+ynlM7WnMvf31/+/v7Vjg0fPvy3tOImMzPTfjwup2Yv3+FZ8R6bx+X26749+XrWZ97Ys+SdfXtjz5J39u2NPUsNs2+PX4GxLEupqalat26dtmzZonbt2rmN9+7dW40bN1ZWVpa97sCBAzp69KhiYmIkSTExMcrPz1dhYaFds2nTJgUGBqpr166enjIAADCMx6/ApKSkaOXKlcrMzFTz5s3te1acTqeaNGkip9Op0aNHa8KECQoODlZgYKD+8pe/KCYmRjfeeKMkadCgQeratatGjRqlOXPmyOVy6YknnlBKSsp5r7IAAADv4fEA8/LLL0uSBgwY4LZ+2bJluu+++yRJ8+bNk4+Pj0aMGKGysjLFxcVp0aJFdm2jRo20fv16PfTQQ4qJiVGzZs2UnJysGTNmeHq6AADAQB4PMBfzqeyAgAClp6crPT39vDWRkZF67733PDk1AADQQPBbSAAAwDgEGAAAYBwCDAAAMA4BBgAAGIcAAwAAjEOAAQAAxiHAAAAA4xBgAACAcQgwAADAOAQYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADGIcAAAADjEGAAAIBxfOt6At6k7eR33Z4fnhVfRzMBAMBsXIEBAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHH4LaQ6dO5vI0n8PhIAABeDKzAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOPwPTD1zLnfDcP3wgAAUBVXYAAAgHG4AlPP8W29AABUxRUYAABgHAIMAAAwDgEGAAAYhwADAACMQ4ABAADG4VNIBuK7YgAA3o4rMAAAwDgEGAAAYBwCDAAAMA73wDQAF/NtvXyjLwCgISHANFDVBRYAABqKev0WUnp6utq2bauAgABFR0dr586ddT0lAABQD9TbKzBvvPGGJkyYoMWLFys6Olrz589XXFycDhw4oJCQkLqeXoN1vis3L8Z4fr+8hQUAuFT1NsC88MILGjNmjO6//35J0uLFi/Xuu+9q6dKlmjx5ch3PrmG41LeZPPX21MV8nw3feQMAqI7DsiyrridxrtOnT6tp06Z66623lJCQYK9PTk5WUVGRMjMzq2xTVlamsrIy+7nT6bwcUwUAALXkQhGlXt4D8+OPP6qiokKhoaFu60NDQ+VyuardJi0tTU6n014AAEDDVS8DzKWYMmWKTpw4YS8AAKDhqpf3wLRq1UqNGjVSQUGB2/qCggKFhYVVu42/v7/8/f3t57X1zlhxcbGcTqdOnDihwMDAWjlGfeSNfXtjz5J39u2NPUve2bc39iw1zL7r5RUYPz8/9e7dW1lZWfa6yspKZWVlKSbmN34cBgAAGK9eXoGRpAkTJig5OVl9+vTRDTfcoPnz56u0tNT+VBIAAPBe9TbA3Hnnnfrhhx80bdo0uVwuRUVFacOGDVVu7L3c/P399eSTT7q9XeUNvLFvb+xZ8s6+vbFnyTv79saepYbZd738GDUAAMCF1Mt7YAAAAC6EAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMJLS09PVtm1bBQQEKDo6Wjt37rxg/Zo1a3TttdcqICBA3bt313vvvec2blmWpk2bpvDwcDVp0kSxsbE6ePBgbbZQYzXp+X/+53/Ur18/tWjRQi1atFBsbGyV+vvuu08Oh8NtGTx4cG23UWM16Xv58uVVegoICHCraWjnesCAAVV6djgcio///38F3IRznZ2drWHDhikiIkIOh0MZGRn/cZutW7eqV69e8vf31zXXXKPly5dXqanpvysup5r2vHbtWt12221q3bq1AgMDFRMTow8++MCtZvr06VXO9bXXXluLXdRcTfveunVrtf+Mn/s7ew3pXFf3N+twONStWze7xoRzfS6vDzBvvPGGJkyYoCeffFK7d+9Wz549FRcXp8LCwmrrt2/frrvuukujR4/Wnj17lJCQoISEBO3du9eumTNnjhYsWKDFixdrx44datasmeLi4nTq1KnL1dYF1bTnrVu36q677tKHH36onJwctWnTRoMGDdK3337rVjd48GB9//339rJq1arL0c5Fq2nfkhQYGOjW05EjR9zGG9q5Xrt2rVu/e/fuVaNGjfSnP/3Jra6+n+vS0lL17NlT6enpF1V/6NAhxcfH69Zbb1VeXp7Gjx+vBx54wO3/0C/ln5/LqaY9Z2dn67bbbtN7772n3Nxc3XrrrRo2bJj27NnjVtetWze3c/3RRx/VxvQvWU37PuvAgQNufYWEhNhjDe1cv/jii269/utf/1JwcHCVv+v6fq6rsLzcDTfcYKWkpNjPKyoqrIiICCstLa3a+pEjR1rx8fFu66Kjo60HH3zQsizLqqystMLCwqy5c+fa40VFRZa/v7+1atWqWuig5mra87nOnDljNW/e3Hr11VftdcnJydbw4cM9PVWPqmnfy5Yts5xO53n35w3net68eVbz5s2tkpISe50J5/rXJFnr1q27YM3jjz9udevWzW3dnXfeacXFxdnPf+treTldTM/V6dq1q/XUU0/Zz5988kmrZ8+enptYLbuYvj/88ENLknX8+PHz1jT0c71u3TrL4XBYhw8ftteZdq4ty7K8+grM6dOnlZubq9jYWHudj4+PYmNjlZOTU+02OTk5bvWSFBcXZ9cfOnRILpfLrcbpdCo6Ovq8+7ycLqXnc/38888qLy9XcHCw2/qtW7cqJCREnTt31kMPPaSffvrJo3P/LS6175KSEkVGRqpNmzYaPny49u3bZ495w7lesmSJEhMT1axZM7f19flcX4r/9HftideyvqusrNTJkyer/F0fPHhQERERat++vZKSknT06NE6mqFnRUVFKTw8XLfddps+/vhje703nOslS5YoNjZWkZGRbutNO9deHWB+/PFHVVRUVPl5gtDQ0Crvh57lcrkuWH/2f2uyz8vpUno+16RJkxQREeH2Bz548GC99tprysrK0uzZs7Vt2zYNGTJEFRUVHp3/pbqUvjt37qylS5cqMzNTr7/+uiorK9W3b1998803khr+ud65c6f27t2rBx54wG19fT/Xl+J8f9fFxcX697//7ZG/m/ruueeeU0lJiUaOHGmvi46O1vLly7Vhwwa9/PLLOnTokPr166eTJ0/W4Ux/m/DwcC1evFhvv/223n77bbVp00YDBgzQ7t27JXnm35H12Xfffaf333+/yt+1iee63v4WEuqnWbNmafXq1dq6davbDa2JiYn24+7du6tHjx7q0KGDtm7dqoEDB9bFVH+zmJgYt18/79u3r7p06aK//e1vevrpp+twZpfHkiVL1L17d91www1u6xviufZ2K1eu1FNPPaXMzEy3e0GGDBliP+7Ro4eio6MVGRmpN998U6NHj66Lqf5mnTt3VufOne3nffv21VdffaV58+bpf//3f+twZpfHq6++qqCgICUkJLitN/Fce/UVmFatWqlRo0YqKChwW19QUKCwsLBqtwkLC7tg/dn/rck+L6dL6fms5557TrNmzdLGjRvVo0ePC9a2b99erVq10pdffvmb5+wJv6Xvsxo3bqzrr7/e7qkhn+vS0lKtXr36ov7FVd/O9aU43991YGCgmjRp4pF/fuqr1atX64EHHtCbb75Z5W20cwUFBalTp05Gn+vq3HDDDXZPDflcW5alpUuXatSoUfLz87tgrQnn2qsDjJ+fn3r37q2srCx7XWVlpbKystz+y/vXYmJi3OoladOmTXZ9u3btFBYW5lZTXFysHTt2nHefl9Ol9Cz98mmbp59+Whs2bFCfPn3+43G++eYb/fTTTwoPD/fIvH+rS+371yoqKpSfn2/31FDPtfTLVwWUlZXpnnvu+Y/HqW/n+lL8p79rT/zzUx+tWrVK999/v1atWuX2UfnzKSkp0VdffWX0ua5OXl6e3VNDPdeStG3bNn355ZcX9R8mRpzrur6LuK6tXr3a8vf3t5YvX259/vnn1tixY62goCDL5XJZlmVZo0aNsiZPnmzXf/zxx5avr6/13HPPWfv377eefPJJq3HjxlZ+fr5dM2vWLCsoKMjKzMy0PvvsM2v48OFWu3btrH//+9+Xvb/q1LTnWbNmWX5+ftZbb71lff/99/Zy8uRJy7Is6+TJk9Zjjz1m5eTkWIcOHbI2b95s9erVy+rYsaN16tSpOumxOjXt+6mnnrI++OAD66uvvrJyc3OtxMREKyAgwNq3b59d09DO9Vk333yzdeedd1ZZb8q5PnnypLVnzx5rz549liTrhRdesPbs2WMdOXLEsizLmjx5sjVq1Ci7/uuvv7aaNm1qTZw40dq/f7+Vnp5uNWrUyNqwYYNd859ey7pW055XrFhh+fr6Wunp6W5/10VFRXbNo48+am3dutU6dOiQ9fHHH1uxsbFWq1atrMLCwsve3/nUtO958+ZZGRkZ1sGDB638/Hxr3Lhxlo+Pj7V582a7pqGd67PuueceKzo6utp9mnCuz+X1AcayLGvhwoXW1Vdfbfn5+Vk33HCD9cknn9hj/fv3t5KTk93q33zzTatTp06Wn5+f1a1bN+vdd991G6+srLSmTp1qhYaGWv7+/tbAgQOtAwcOXI5WLlpNeo6MjLQkVVmefPJJy7Is6+eff7YGDRpktW7d2mrcuLEVGRlpjRkzpt78sf9aTfoeP368XRsaGmrdfvvt1u7du93219DOtWVZ1j//+U9LkrVx48Yq+zLlXJ/9qOy5y9lek5OTrf79+1fZJioqyvLz87Pat29vLVu2rMp+L/Ra1rWa9ty/f/8L1lvWLx8lDw8Pt/z8/Kwrr7zSuvPOO60vv/zy8jb2H9S079mzZ1sdOnSwAgICrODgYGvAgAHWli1bquy3IZ1ry/rlKx6aNGlivfLKK9Xu04RzfS6HZVlWLV/kAQAA8CivvgcGAACYiQADAACMQ4ABAADGIcAAAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAALho2dnZGjZsmCIiIuRwOJSRkVHjfbz55puKiopS06ZNFRkZqblz59Z4HwQYAABw0UpLS9WzZ0+lp6df0vbvv/++kpKS9Oc//1l79+7VokWLNG/ePL300ks12g/fxAsAAC6Jw+HQunXrlJCQYK8rKyvTX//6V61atUpFRUW67rrrNHv2bA0YMECSdPfdd6u8vFxr1qyxt1m4cKHmzJmjo0ePyuFwXNSxuQIDAAA8JjU1VTk5OVq9erU+++wz/elPf9LgwYN18OBBSb8EnICAALdtmjRpom+++UZHjhy56OMQYAAAgEccPXpUy5Yt05o1a9SvXz916NBBjz32mG6++WYtW7ZMkhQXF6e1a9cqKytLlZWV+uKLL/T8889Lkr7//vuLPpZvrXQAAAC8Tn5+vioqKtSpUye39WVlZWrZsqUkacyYMfrqq680dOhQlZeXKzAwUOPGjdP06dPl43Px11UIMAAAwCNKSkrUqFEj5ebmqlGjRm5jV1xxhaRf7puZPXu2nn32WblcLrVu3VpZWVmSpPbt21/0sQgwAADAI66//npVVFSosLBQ/fr1u2Bto0aNdOWVV0qSVq1apZiYGLVu3fqij0WAAQAAF62kpERffvml/fzQoUPKy8tTcHCwOnXqpKSkJN177716/vnndf311+uHH35QVlaWevToofj4eP3444966623NGDAAJ06dcq+Z2bbtm01mgcfowYAABdt69atuvXWW6usT05O1vLly1VeXq6ZM2fqtdde07fffqtWrVrpxhtv1FNPPaXu3bvrxx9/1LBhw5Sfny/LshQTE6NnnnlG0dHRNZoHAQYAABiHj1EDAADjEGAAAIBxCDAAAMA4BBgAAGAcAgwAADAOAQYAABiHAAMAAIxDgAEAAMYhwAAAAOMQYAAAgHEIMAAAwDj/H3BwSXbX3W68AAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"df.hist(column='size', bins=100)\n"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "2441f24c-e5c9-42da-9728-d7b115675648",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-07-10 08:36:32 [DEBUG] Loaded backend widget version unknown.\n"
]
},
{
"data": {
"text/plain": [
"array([[]], dtype=object)"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bbacd6711fb74eeea6325aea9bb38a86",
"version_major": 2,
"version_minor": 0
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/TGe4hAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAwuUlEQVR4nO3de1RVdd7H8c8BBdQEROM2GaKlqaPiZSSaTEwSlRxpLLPIqMe0abQns7H0KU3tgqh5jXRseX3yUjaKjRVqeGFKUkN5UnMcKy/T5UCloOCIXPbzR8u9OoKWxO3we7/WOqtz9u+7z/l9+Qnr0z57n+OwLMsSAAAAjOFR2xMAAABAzSIAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIwHgPPfSQWrVqVdvTAIAaQwAEAAAwjMOyLKu2JwEAtam4uFhlZWXy9vau7akAQI0gAAIAABiGt4AB1Htnz57V2LFj1apVK3l7eyswMFB33HGH9u3bJ6n8OYDR0dFyOBwV3pYvX27X5eXlaezYsWrZsqW8vb11ww03KDk5WWVlZTXcIQBcnQa1PQEAqG5/+tOf9Pbbb2vMmDHq0KGDfvjhB3344Yc6fPiwunXrVq7+2Wef1SOPPOKy7Y033tDmzZsVGBgoSTp37px69+6tr7/+Wo8++qiuv/567dq1SxMnTtS3336ruXPn1kRrAFApvAUMoN7z9/fXAw88oFdffbXC8Yceekg7duzQ8ePHKxzftWuXoqOjNXz4cC1ZskSS9OKLL2r69Onav3+/brzxRrt24sSJmjlzpo4dO6aWLVtWeS8AUBV4CxhAvefv76/du3frm2++uep9nU6n7r77bkVEROi1116zt69bt069evVSs2bN9P3339u3mJgYlZaWKiMjoypbAIAqxVvAAOq9GTNmKDExUS1btlT37t01cOBAPfjgg2rduvUV9yspKdHQoUNVWlqq9evXu1wlfPToUX366ae69tprK9w3Nze3SnsAgKpEAARQ7w0dOlS9evXShg0btGXLFs2cOVPJyclav369BgwYcNn9xo8fr8zMTH3wwQe67rrrXMbKysp0xx136Omnn65w37Zt21ZpDwBQlTgHEIBxcnNz1a1bN7Vq1UoffvhhhecArl27Vvfdd5/mzp2rJ554otxzdOzYUX5+ftq1a1cNzhwAqgbnAAKo10pLS5Wfn++yLTAwUKGhoSoqKqpwn4MHD+qRRx7RAw88UGH4k348qpiZmanNmzeXG8vLy1NJScmvnzwAVBPeAgZQr509e1bXXXed7r77bnXp0kXXXHONPvjgA+3du1evvPJKhfs8/PDDkqTbbrtNb7zxhsvYLbfcotatW2v8+PF65513dOedd+qhhx5S9+7dVVhYqAMHDujtt9/W8ePH1aJFi2rvDwAqgwAIoF5r3Lix/vznP2vLli1av369ysrKdMMNN+i1117TY489VuE+3333nQoLCzVq1KhyY8uWLVPr1q3VuHFj7dy5Uy+//LLWrVunlStXytfXV23bttXUqVPl5+dX3a0BQKVxDiAAAIBhOAcQAADAMARAAAAAwxAAAQAADEMABAAAMEydDIAZGRkaNGiQQkND5XA4lJqaao8VFxfrmWeeUadOndSkSROFhobqwQcfLPcdn6dOnVJCQoJ8fX3l7++vESNGqKCgwKXm008/Va9eveTj46OWLVtqxowZNdEeAABAraqTAbCwsFBdunRRSkpKubFz585p3759mjRpkvbt26f169fryJEj+sMf/uBSl5CQoEOHDmnr1q3atGmTMjIyXD7S4cyZM+rXr5/CwsKUlZWlmTNnasqUKVq8eHG19wcAAFCb6vzHwDgcDm3YsEHx8fGXrdm7d6969uypEydO6Prrr9fhw4fVoUMH7d27Vz169JAkpaWlaeDAgfrqq68UGhqqhQsX6tlnn5XT6ZSXl5ckacKECUpNTdU///nPmmgNAACgVtSLD4LOz8+Xw+GQv7+/JCkzM1P+/v52+JOkmJgYeXh4aPfu3brrrruUmZmp2267zQ5/khQbG6vk5GSdPn1azZo1+9nXdTgcVd4LAACoOXX8OFi1cfsAeP78eT3zzDO677775OvrK0lyOp0KDAx0qWvQoIECAgLkdDrtmvDwcJeaoKAge6yiAFhUVHTZ7w4FAABwF3XyHMBfqri4WEOHDpVlWVq4cGG1v15SUpL8/PzsGwAAgDty2yOAF8PfiRMntG3bNvvonyQFBwcrNzfXpb6kpESnTp1ScHCwXZOTk+NSc/HxxZpLTZw4UePGjbMf/zQE/vRKZQAAUHdd6boCU7hlALwY/o4ePart27erefPmLuNRUVHKy8tTVlaWunfvLknatm2bysrKFBkZadc8++yzKi4uVsOGDSVJW7duVbt27S57/p+3t7e8vb0rHBs8eHBVtSdJ2rhxY7U9d11lYs+SmX2b2LNkZt8m9iyZ2beJPbuzOvkWcEFBgbKzs5WdnS1JOnbsmLKzs3Xy5EkVFxfr7rvv1ieffKJVq1aptLRUTqdTTqdTFy5ckCS1b99e/fv318iRI7Vnzx599NFHGjNmjIYNG6bQ0FBJ0v333y8vLy+NGDFChw4d0ptvvql58+a5HOEDAACoj+rkEcBPPvlEffr0sR9fDGWJiYmaMmWK3nnnHUlSRESEy37bt29XdHS0JGnVqlUaM2aM+vbtKw8PDw0ZMkTz58+3a/38/LRlyxaNHj1a3bt3V4sWLTR58mSXzwoEAACoj+pkAIyOjr7iZdm/5JLtgIAArV69+oo1nTt31j/+8Y+rnh8AAIA7q5NvAQMAAKD6EAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAHQDrSa8q1YT3q3taQAAgHqCAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYRrU9gTwy7Wa8G65bcenx9XCTAAAgDvjCCAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGHqZADMyMjQoEGDFBoaKofDodTUVJdxy7I0efJkhYSEqFGjRoqJidHRo0ddak6dOqWEhAT5+vrK399fI0aMUEFBgUvNp59+ql69esnHx0ctW7bUjBkzqrs1AACAWlcnA2BhYaG6dOmilJSUCsdnzJih+fPna9GiRdq9e7eaNGmi2NhYnT9/3q5JSEjQoUOHtHXrVm3atEkZGRkaNWqUPX7mzBn169dPYWFhysrK0syZMzVlyhQtXry42vsDAACoTXXyu4AHDBigAQMGVDhmWZbmzp2r5557ToMHD5YkrVy5UkFBQUpNTdWwYcN0+PBhpaWlae/everRo4ckacGCBRo4cKBmzZql0NBQrVq1ShcuXNDSpUvl5eWljh07Kjs7W7Nnz3YJigAAAPWNw7Isq7YncSUOh0MbNmxQfHy8JOnLL79UmzZttH//fkVERNh1vXv3VkREhObNm6elS5fqqaee0unTp+3xkpIS+fj4aN26dbrrrrv04IMP6syZMy5vL2/fvl233367Tp06pWbNmpWbS1FRkYqKiuzHfn5+9v1L36YGAAB108VMIf14YMlEdfIt4CtxOp2SpKCgIJftQUFB9pjT6VRgYKDLeIMGDRQQEOBSU9Fz/PQ1LpWUlCQ/Pz/7BgAA4I7cLgDWpokTJyo/P9++AQAAuKM6eQ7glQQHB0uScnJyFBISYm/Pycmx3xIODg5Wbm6uy34lJSU6deqUvX9wcLBycnJcai4+vlhzKW9vb3l7e1c4dvF8xKqyceNG+/4TmZdfpuPT46r0dWvTT3uu6p9nXWZi3yb2LJnZt4k9S2b2bWLP7sztjgCGh4crODhY6enp9rYzZ85o9+7dioqKkiRFRUUpLy9PWVlZds22bdtUVlamyMhIuyYjI0PFxcV2zdatW9WuXbsKz/8DAACoL+pkACwoKFB2drays7MlSceOHVN2drZOnjwph8OhsWPH6sUXX9Q777yjAwcO6MEHH1RoaKh9Umf79u3Vv39/jRw5Unv27NFHH32kMWPGaNiwYQoNDZUk3X///fLy8tKIESN06NAhvfnmm5o3b57GjRtXS10DAADUjDr5FvAnn3yiPn362I8vhrLExEQtX75cTz/9tAoLCzVq1Cjl5eXp1ltvVVpamnx8fOx9Vq1apTFjxqhv377y8PDQkCFDNH/+fHvcz89PW7Zs0ejRo9W9e3e1aNFCkydP5iNgAABAvVcnA2B0dPQVL8t2OByaNm2apk2bdtmagIAArV69+oqv07lzZ/3jH/+o9DwBAADcUZ18CxgAAADVhwAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGLcMgKWlpZo0aZLCw8PVqFEjtWnTRi+88IIsy7JrLMvS5MmTFRISokaNGikmJkZHjx51eZ5Tp04pISFBvr6+8vf314gRI1RQUFDT7QAAANQotwyAycnJWrhwoV599VUdPnxYycnJmjFjhhYsWGDXzJgxQ/Pnz9eiRYu0e/duNWnSRLGxsTp//rxdk5CQoEOHDmnr1q3atGmTMjIyNGrUqNpoCQAAoMY0qO0JVMauXbs0ePBgxcXFSZJatWqlNWvWaM+ePZJ+PPo3d+5cPffccxo8eLAkaeXKlQoKClJqaqqGDRumw4cPKy0tTXv37lWPHj0kSQsWLNDAgQM1a9YshYaG1k5zAAAA1cxh/fR9Uzfx8ssva/HixdqyZYvatm2r//u//1O/fv00e/ZsJSQk6Msvv1SbNm20f/9+RURE2Pv17t1bERERmjdvnpYuXaqnnnpKp0+ftsdLSkrk4+OjdevW6a677ir3ukVFRSoqKrIf+/n52fdTU1OrpVcAAFC14uPj7ftuGIOqhFseAZwwYYLOnDmjm266SZ6eniotLdVLL72khIQESZLT6ZQkBQUFuewXFBRkjzmdTgUGBrqMN2jQQAEBAXbNpZKSkjR16tSqbgcAAKBGueU5gG+99ZZWrVql1atXa9++fVqxYoVmzZqlFStWVOvrTpw4Ufn5+fYNAADAHbnlEcDx48drwoQJGjZsmCSpU6dOOnHihJKSkpSYmKjg4GBJUk5OjkJCQuz9cnJy7LeEg4ODlZub6/K8JSUlOnXqlL3/pby9veXt7V3h2MVzDavKxo0b7ftPZF5+mY5Pj6vS161NP+25qn+edZmJfZvYs2Rm3yb2LJnZt4k9uzO3PAJ47tw5eXi4Tt3T01NlZWWSpPDwcAUHBys9Pd0eP3PmjHbv3q2oqChJUlRUlPLy8pSVlWXXbNu2TWVlZYqMjKyBLgAAAGqHWx4BHDRokF566SVdf/316tixo/bv36/Zs2frv/7rvyRJDodDY8eO1Ysvvqgbb7xR4eHhmjRpkkJDQ+0TP9u3b6/+/ftr5MiRWrRokYqLizVmzBgNGzaMK4ABAEC95pYBcMGCBZo0aZL+/Oc/Kzc3V6GhoXr00Uc1efJku+bpp59WYWGhRo0apby8PN16661KS0uTj4+PXbNq1SqNGTNGffv2lYeHh4YMGaL58+fXRksAAAA1xi0DYNOmTTV37lzNnTv3sjUOh0PTpk3TtGnTLlsTEBCg1atXV8MMAQAA6i63PAcQAAAAlUcABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMIzbBsCvv/5aDzzwgJo3b65GjRqpU6dO+uSTT+xxy7I0efJkhYSEqFGjRoqJidHRo0ddnuPUqVNKSEiQr6+v/P39NWLECBUUFNR0KwAAADXKLQPg6dOn9fvf/14NGzbU+++/r88++0yvvPKKmjVrZtfMmDFD8+fP16JFi7R79241adJEsbGxOn/+vF2TkJCgQ4cOaevWrdq0aZMyMjI0atSo2mgJAACgxjSo7QlURnJyslq2bKlly5bZ28LDw+37lmVp7ty5eu655zR48GBJ0sqVKxUUFKTU1FQNGzZMhw8fVlpamvbu3asePXpIkhYsWKCBAwdq1qxZCg0NrdmmAAAAaohbHgF855131KNHD91zzz0KDAxU165d9frrr9vjx44dk9PpVExMjL3Nz89PkZGRyszMlCRlZmbK39/fDn+SFBMTIw8PD+3evbvmmgEAAKhhbnkE8Msvv9TChQs1btw4/c///I/27t2r//7v/5aXl5cSExPldDolSUFBQS77BQUF2WNOp1OBgYEu4w0aNFBAQIBdc6mioiIVFRVVOLZx48Zf29ZlzYsquexYdb5ubaqvff0cE/s2sWfJzL5N7Fkys28Te3Y3bnkEsKysTN26ddPLL7+srl27atSoURo5cqQWLVpUra+blJQkPz8/+wYAAOCO3DIAhoSEqEOHDi7b2rdvr5MnT0qSgoODJUk5OTkuNTk5OfZYcHCwcnNzXcZLSkp06tQpu+ZSEydOVH5+vn0DAABwR275FvDvf/97HTlyxGXbv/71L4WFhUn68YKQ4OBgpaenKyIiQpJ05swZ7d69W4899pgkKSoqSnl5ecrKylL37t0lSdu2bVNZWZkiIyMrfF1vb295e3tXOHbxYpOq8tPD509kXn6Zjk+Pq9LXrU0/7bmqf551mYl9m9izZGbfJvYsmdm3iT27M7cMgE8++aRuueUWvfzyyxo6dKj27NmjxYsXa/HixZIkh8OhsWPH6sUXX9SNN96o8PBwTZo0SaGhoYqPj5f04xHD/v37228dFxcXa8yYMRo2bBhXAAMAgHrNLQPg7373O23YsEETJ07UtGnTFB4errlz5yohIcGuefrpp1VYWKhRo0YpLy9Pt956q9LS0uTj42PXrFq1SmPGjFHfvn3l4eGhIUOGaP78+bXREgAAQI1xywAoSXfeeafuvPPOy447HA5NmzZN06ZNu2xNQECAVq9eXR3TAwAAqLPc8iIQAAAAVB4BEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMPUiwA4ffp0ORwOjR071t52/vx5jR49Ws2bN9c111yjIUOGKCcnx2W/kydPKi4uTo0bN1ZgYKDGjx+vkpKSGp49AABAzXL7ALh371799a9/VefOnV22P/nkk/r73/+udevWaefOnfrmm2/0xz/+0R4vLS1VXFycLly4oF27dmnFihVavny5Jk+eXNMtAAAA1Ci3DoAFBQVKSEjQ66+/rmbNmtnb8/PztWTJEs2ePVu33367unfvrmXLlmnXrl36+OOPJUlbtmzRZ599pjfeeEMREREaMGCAXnjhBaWkpOjChQu11RIAAEC1c1iWZdX2JCorMTFRAQEBmjNnjqKjoxUREaG5c+dq27Zt6tu3r06fPi1/f3+7PiwsTGPHjtWTTz6pyZMn65133lF2drY9fuzYMbVu3Vr79u1T165dy71eUVGRioqK7Md+fn72/dTU1OpoEQAAVLH4+Hj7vhvHoF/FbY8Arl27Vvv27VNSUlK5MafTKS8vL5fwJ0lBQUFyOp12TVBQULnxi2MVSUpKkp+fn30DAABwR24ZAP/973/riSee0KpVq+Tj41Njrztx4kTl5+fbNwAAAHfUoLYnUBlZWVnKzc1Vt27d7G2lpaXKyMjQq6++qs2bN+vChQvKy8tzOQqYk5Oj4OBgSVJwcLD27Nnj8rwXrxK+WHMpb29veXt7Vzg2ePDgX9NSORs3brTvP5F5+WU6Pj2uSl+3Nv2056r+edZlJvZtYs+SmX2b2LNkZt8m9uzO3PIIYN++fXXgwAFlZ2fbtx49eighIcG+37BhQ6Wnp9v7HDlyRCdPnlRUVJQkKSoqSgcOHFBubq5ds3XrVvn6+qpDhw413hMAAEBNccsjgE2bNtVvf/tbl21NmjRR8+bN7e0jRozQuHHjFBAQIF9fXz3++OOKiorSzTffLEnq16+fOnTooOHDh2vGjBlyOp167rnnNHr06Mse5QMAAKgP3DIA/hJz5syRh4eHhgwZoqKiIsXGxuq1116zxz09PbVp0yY99thjioqKUpMmTZSYmKhp06bV4qwBAACqX70JgDt27HB57OPjo5SUFKWkpFx2n7CwML333nvVPDMAAIC6xS3PAQQAAEDlEQABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMEyD2p4Afp1WE951eXx8elwtzQQAALgLjgACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBi3DIBJSUn63e9+p6ZNmyowMFDx8fE6cuSIS8358+c1evRoNW/eXNdcc42GDBminJwcl5qTJ08qLi5OjRs3VmBgoMaPH6+SkpKabAUAAKDGuWUA3Llzp0aPHq2PP/5YW7duVXFxsfr166fCwkK75sknn9Tf//53rVu3Tjt37tQ333yjP/7xj/Z4aWmp4uLidOHCBe3atUsrVqzQ8uXLNXny5NpoCQAAoMY0qO0JVEZaWprL4+XLlyswMFBZWVm67bbblJ+fryVLlmj16tW6/fbbJUnLli1T+/bt9fHHH+vmm2/Wli1b9Nlnn+mDDz5QUFCQIiIi9MILL+iZZ57RlClT5OXlVRutAQAAVDu3PAJ4qfz8fElSQECAJCkrK0vFxcWKiYmxa2666SZdf/31yszMlCRlZmaqU6dOCgoKsmtiY2N15swZHTp0qAZnDwAAULMclmVZtT2JX6OsrEx/+MMflJeXpw8//FCStHr1aj388MMqKipyqe3Zs6f69Omj5ORkjRo1SidOnNDmzZvt8XPnzqlJkyZ67733NGDAgHKvVVRU5PKcfn5+9v3U1NQq7gwAAFSH+Ph4+76bx6BKc/sjgKNHj9bBgwe1du3aan+tpKQk+fn52TcAAAB35NYBcMyYMdq0aZO2b9+u6667zt4eHBysCxcuKC8vz6U+JydHwcHBds2lVwVffHyx5lITJ05Ufn6+fQMAAHBHbnkRiGVZevzxx7Vhwwbt2LFD4eHhLuPdu3dXw4YNlZ6eriFDhkiSjhw5opMnTyoqKkqSFBUVpZdeekm5ubkKDAyUJG3dulW+vr7q0KFDha/r7e0tb2/vCscGDx5cVe1JkjZu3GjffyLzly/T8elxVTqPmvTTnqv651mXmdi3iT1LZvZtYs+SmX2b2LM7c8sAOHr0aK1evVobN25U06ZN5XQ6Jf14Tl6jRo3k5+enESNGaNy4cQoICJCvr68ef/xxRUVF6eabb5Yk9evXTx06dNDw4cM1Y8YMOZ1OPffccxo9evRlQx4AAEB94JYBcOHChZKk6Ohol+3Lli3TQw89JEmaM2eOPDw8NGTIEBUVFSk2NlavvfaaXevp6alNmzbpscceU1RUlJo0aaLExERNmzatptoAAACoFW4ZAH/JFTs+Pj5KSUlRSkrKZWvCwsL03nvvVeXUAAAA6jy3vggEAAAAV48ACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABimQW1PAFWr1YR3y207Pj2uFmYCAADqKo4AAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACAYfguYANc+v3AfDcwAABm4wggAACAYQiAAAAAhiEAAgAAGIYACAAAYBgCIAAAgGEIgAAAAIYhAAIAABiGzwE00KWfCyjx2YAAAJiEI4AAAACG4QggJPFtIQAAmIQjgAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACG4SpgVIjPCgQAoP7iCCAAAIBhCIAAAACGIQACAAAYhnMA8Yv9km8L4RtFAACo+wiAqLSKLhQBAAB1n/FvAaekpKhVq1by8fFRZGSk9uzZU9tTAgAAqFZGHwF88803NW7cOC1atEiRkZGaO3euYmNjdeTIEQUGBtb29Oqtyx05nBdV9c/LW9AAAJRndACcPXu2Ro4cqYcffliStGjRIr377rtaunSpJkyYUMuzqx8q+zZxVb29zHmLAACU57Asy6rtSdSGCxcuqHHjxnr77bcVHx9vb09MTFReXp42btxYbp+ioiIVFRXZj/38/GpiqgAAoJoYGoPMPQfw+++/V2lpqYKCgly2BwUFyel0VrhPUlKS/Pz87BsAAIA7MjYAVsbEiROVn59v3wAAANyRsecAtmjRQp6ensrJyXHZnpOTo+Dg4Ar38fb2lre3t/24Og8bnzlzRn5+fsrPz5evr2+1vU5dYmLPkpl9m9izZGbfJvYsmdm3iT27M2OPAHp5eal79+5KT0+3t5WVlSk9PV1RUb/yclQAAIA6zNgjgJI0btw4JSYmqkePHurZs6fmzp2rwsJC+6pgAACA+sjoAHjvvffqu+++0+TJk+V0OhUREaG0tLRyF4bUBm9vbz3//PMubznXdyb2LJnZt4k9S2b2bWLPkpl9m9izOzP2Y2AAAABMZew5gAAAAKYiAAIAABiGAAgAAGAYAiAAAIBhCIA1JCUlRa1atZKPj48iIyO1Z8+eK9avW7dON910k3x8fNSpUye99957LuOWZWny5MkKCQlRo0aNFBMTo6NHj1ZnC5VyNX2//vrr6tWrl5o1a6ZmzZopJiamXP1DDz0kh8Phcuvfv391t3FVrqbn5cuXl+vHx8fHpaY+rnV0dHS5vh0Oh+Li4uyaur7WGRkZGjRokEJDQ+VwOJSamvqz++zYsUPdunWTt7e3brjhBi1fvrxczdX+rahJV9vz+vXrdccdd+jaa6+Vr6+voqKitHnzZpeaKVOmlFvnm266qRq7uHpX2/eOHTsq/Pd96deM1qe1ruj31eFwqGPHjnaNO6y1SQiANeDNN9/UuHHj9Pzzz2vfvn3q0qWLYmNjlZubW2H9rl27dN9992nEiBHav3+/4uPjFR8fr4MHD9o1M2bM0Pz587Vo0SLt3r1bTZo0UWxsrM6fP19Tbf2sq+17x44duu+++7R9+3ZlZmaqZcuW6tevn77++muXuv79++vbb7+1b2vWrKmJdn6Rq+1Zknx9fV36OXHihMt4fVzr9evXu/R88OBBeXp66p577nGpq8trXVhYqC5duiglJeUX1R87dkxxcXHq06ePsrOzNXbsWD3yyCMugagy/35q0tX2nJGRoTvuuEPvvfeesrKy1KdPHw0aNEj79+93qevYsaPLOn/44YfVMf1Ku9q+Lzpy5IhLX4GBgfZYfVvrefPmufT673//WwEBAeV+p+v6WhvFQrXr2bOnNXr0aPtxaWmpFRoaaiUlJVVYP3ToUCsuLs5lW2RkpPXoo49almVZZWVlVnBwsDVz5kx7PC8vz/L29rbWrFlTDR1UztX2famSkhKradOm1ooVK+xtiYmJ1uDBg6t6qlXmantetmyZ5efnd9nnM2Wt58yZYzVt2tQqKCiwt9X1tf4pSdaGDRuuWPP0009bHTt2dNl27733WrGxsfbjX/tzrEm/pOeKdOjQwZo6dar9+Pnnn7e6dOlSdROrZr+k7+3bt1uSrNOnT1+2pr6v9YYNGyyHw2EdP37c3uZua13fcQSwml24cEFZWVmKiYmxt3l4eCgmJkaZmZkV7pOZmelSL0mxsbF2/bFjx+R0Ol1q/Pz8FBkZednnrGmV6ftS586dU3FxsQICAly279ixQ4GBgWrXrp0ee+wx/fDDD1U698qqbM8FBQUKCwtTy5YtNXjwYB06dMgeM2WtlyxZomHDhqlJkyYu2+vqWlfGz/1eV8XPsa4rKyvT2bNny/1OHz16VKGhoWrdurUSEhJ08uTJWpph1YqIiFBISIjuuOMOffTRR/Z2E9Z6yZIliomJUVhYmMv2+rrW7ogAWM2+//57lZaWlvt2kaCgoHLng1zkdDqvWH/xv1fznDWtMn1f6plnnlFoaKjLH8n+/ftr5cqVSk9PV3Jysnbu3KkBAwaotLS0SudfGZXpuV27dlq6dKk2btyoN954Q2VlZbrlllv01VdfSTJjrffs2aODBw/qkUcecdlel9e6Mi73e33mzBn95z//qZLfmbpu1qxZKigo0NChQ+1tkZGRWr58udLS0rRw4UIdO3ZMvXr10tmzZ2txpr9OSEiIFi1apL/97W/629/+ppYtWyo6Olr79u2TVDV/H+uyb775Ru+//3653+n6uNbuzOivgkPdNX36dK1du1Y7duxwuShi2LBh9v1OnTqpc+fOatOmjXbs2KG+ffvWxlR/laioKEVFRdmPb7nlFrVv315//etf9cILL9TizGrOkiVL1KlTJ/Xs2dNle31ba9OtXr1aU6dO1caNG13OhRswYIB9v3PnzoqMjFRYWJjeeustjRgxojam+qu1a9dO7dq1sx/fcsst+uKLLzRnzhz97//+by3OrGasWLFC/v7+io+Pd9leH9fanXEEsJq1aNFCnp6eysnJcdmek5Oj4ODgCvcJDg6+Yv3F/17Nc9a0yvR90axZszR9+nRt2bJFnTt3vmJt69at1aJFC33++ee/es6/1q/p+aKGDRuqa9eudj/1fa0LCwu1du3aX/THvy6tdWVc7vfa19dXjRo1qpJ/P3XV2rVr9cgjj+itt94q9zb4pfz9/dW2bVu3XefL6dmzp91TfV5ry7K0dOlSDR8+XF5eXlesra9r7S4IgNXMy8tL3bt3V3p6ur2trKxM6enpLkd+fioqKsqlXpK2bt1q14eHhys4ONil5syZM9q9e/dln7OmVaZv6ccrXl944QWlpaWpR48eP/s6X331lX744QeFhIRUybx/jcr2/FOlpaU6cOCA3U99Xmvpx487Kioq0gMPPPCzr1OX1royfu73uir+/dRFa9as0cMPP6w1a9a4fMzP5RQUFOiLL75w23W+nOzsbLun+rrWkrRz5059/vnnv+h/6urrWruN2r4KxQRr1661vL29reXLl1ufffaZNWrUKMvf399yOp2WZVnW8OHDrQkTJtj1H330kdWgQQNr1qxZ1uHDh63nn3/eatiwoXXgwAG7Zvr06Za/v7+1ceNG69NPP7UGDx5shYeHW//5z39qvL/Ludq+p0+fbnl5eVlvv/229e2339q3s2fPWpZlWWfPnrX+8pe/WJmZmdaxY8esDz74wOrWrZt14403WufPn6+VHi91tT1PnTrV2rx5s/XFF19YWVlZ1rBhwywfHx/r0KFDdk19XOuLbr31Vuvee+8tt90d1vrs2bPW/v37rf3791uSrNmzZ1v79++3Tpw4YVmWZU2YMMEaPny4Xf/ll19ajRs3tsaPH28dPnzYSklJsTw9Pa20tDS75ud+jrXtantetWqV1aBBAyslJcXldzovL8+ueeqpp6wdO3ZYx44dsz766CMrJibGatGihZWbm1vj/V3O1fY9Z84cKzU11Tp69Kh14MAB64knnrA8PDysDz74wK6pb2t90QMPPGBFRkZW+JzusNYmIQDWkAULFljXX3+95eXlZfXs2dP6+OOP7bHevXtbiYmJLvVvvfWW1bZtW8vLy8vq2LGj9e6777qMl5WVWZMmTbKCgoIsb29vq2/fvtaRI0dqopWrcjV9h4WFWZLK3Z5//nnLsizr3LlzVr9+/axrr73WatiwoRUWFmaNHDmyzvzBvOhqeh47dqxdGxQUZA0cONDat2+fy/PVx7W2LMv65z//aUmytmzZUu653GGtL37Ux6W3i30mJiZavXv3LrdPRESE5eXlZbVu3dpatmxZuee90s+xtl1tz717975ivWX9+FE4ISEhlpeXl/Wb3/zGuvfee63PP/+8Zhv7GVfbd3JystWmTRvLx8fHCggIsKKjo61t27aVe976tNaW9eNHVDVq1MhavHhxhc/pDmttEodlWVY1H2QEAABAHcI5gAAAAIYhAAIAABiGAAgAAGAYAiAAAIBhCIAAAACGIQACAAAYhgAIAABgGAIgAACoUzIyMjRo0CCFhobK4XAoNTX1qp/jrbfeUkREhBo3bqywsDDNnDmz6ifqxgiAAACgTiksLFSXLl2UkpJSqf3ff/99JSQk6E9/+pMOHjyo1157TXPmzNGrr75axTN1X3wTCAAAqLMcDoc2bNig+Ph4e1tRUZGeffZZrVmzRnl5efrtb3+r5ORkRUdHS5Luv/9+FRcXa926dfY+CxYs0IwZM3Ty5Ek5HI4a7qLu4QggAABwK2PGjFFmZqbWrl2rTz/9VPfcc4/69++vo0ePSvoxIPr4+Ljs06hRI3311Vc6ceJEbUy5ziEAAgAAt3Hy5EktW7ZM69atU69evdSmTRv95S9/0a233qply5ZJkmJjY7V+/Xqlp6errKxM//rXv/TKK69Ikr799tvanH6d0aC2JwAAAPBLHThwQKWlpWrbtq3L9qKiIjVv3lySNHLkSH3xxRe68847VVxcLF9fXz3xxBOaMmWKPDw49iURAAEAgBspKCiQp6ensrKy5Onp6TJ2zTXXSPrxvMHk5GS9/PLLcjqduvbaa5Weni5Jat26dY3PuS4iAAIAALfRtWtXlZaWKjc3V7169bpiraenp37zm99IktasWaOoqChde+21NTHNOo8ACAAA6pSCggJ9/vnn9uNjx44pOztbAQEBatu2rRISEvTggw/qlVdeUdeuXfXdd98pPT1dnTt3VlxcnL7//nu9/fbbio6O1vnz5+1zBnfu3FmLXdUtfAwMAACoU3bs2KE+ffqU256YmKjly5eruLhYL774olauXKmvv/5aLVq00M0336ypU6eqU6dO+v777zVo0CAdOHBAlmUpKipKL730kiIjI2uhm7qJAAgAAGAYLoUBAAAwDAEQAADAMARAAAAAwxAAAQAADEMABAAAMAwBEAAAwDAEQAAAAMMQAAEAAAxDAAQAADAMARAAAMAwBEAAAADDEAABAAAMQwAEAAAwzP8Do4aH4yHdmB8AAAAASUVORK5CYII=",
"text/html": [
"\n",
" \n",
"
\n",
" Figure\n",
"
\n",
"

\n",
"
\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib widget\n",
"df.hist(column='size', bins=100)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b0794b7a-79a4-4f2c-a08d-5461b718847a",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 5
}