Files
sarif-cli/bin/sarif-pad-aggregate
Kristen Newbury a3aed444c1 Add explicit column ordering to to_csv writes
in interfaces:
sarif-pad-aggregates
sarif-extract-scans
2023-05-29 08:58:29 -04:00

138 lines
4.1 KiB
Python
Executable File

#!/usr/bin/env python3
from copy import deepcopy
from datetime import datetime
import argparse
import csv
import numpy
import os
import pandas as pd
import random
from sarif_cli import scan_tables
from sarif_cli import table_joins
from sarif_cli import columns
#
# Handle arguments
#
parser = argparse.ArgumentParser(
description="Fill the scans table's db_create_start/stop and "
"scan_start/stop_date columns with realistic random values" )
parser.add_argument('aggregate_dir', metavar='aggregate-dir', type=str,
help='Directory containing combined scan tables')
parser.add_argument('output_dir', metavar='output-dir', type=str,
help='Directory for writing the combined and padded scan tables')
args = parser.parse_args()
#
# Prepare output directory
#
try: os.mkdir(args.output_dir, mode=0o755)
except FileExistsError: pass
#
# TODO: factor out code in common with ./sarif-aggregate-scans
#
#
# Utilities
#
_extract_scans_tables = {
"scans" : [],
"results" : [],
"projects" : [],
"codeflows" : [],
}
_table_output_dtypes = {
"scans" : scan_tables.ScanTablesTypes.scans,
"results" : scan_tables.ScanTablesTypes.results,
"projects" : scan_tables.ScanTablesTypes.projects,
"codeflows" : table_joins.BaseTablesTypes.codeflows,
}
# Accomodate special dtype cases for parsing to avoid
#
# TypeError: the dtype datetime64 is not supported for parsing, pass this
# column using parse_dates instead
#
_parse_dates = {
"scans" : [],
"results" : [],
"projects" : [],
"codeflows" : [],
}
# Prep for in-place modification, use copies of original module values
_table_input_dtypes = { key: deepcopy(val) for key, val in _table_output_dtypes.items()}
# Replace datetime64 with str and track the affected columns
for tab_name, tab_dtypes in _table_input_dtypes.items():
for col_key, col_dtype in tab_dtypes.items():
# Let pandas parse datetime64 as str, then convert to date
if col_dtype == numpy.dtype('M'):
# Note: pd.StringDtype() here will cause parsing failure later
tab_dtypes[col_key] = str
_parse_dates[tab_name].append(col_key)
def _all_csv_files_exist(output_dir):
for file_prefix in _extract_scans_tables.keys():
csv_fname = os.path.join(output_dir, file_prefix + ".csv")
if not os.path.exists(csv_fname):
return False
return True
#
# Read the combined dataframes
#
for file_prefix in _extract_scans_tables.keys():
csv_fname = os.path.join(args.aggregate_dir, file_prefix + ".csv")
data = pd.read_csv(csv_fname, dtype = _table_input_dtypes[file_prefix],
parse_dates = _parse_dates[file_prefix])
_extract_scans_tables[file_prefix].append(data)
#
# Pad the dataframes
#
# ---- placeholder dates ----
# - Across scans, these should spread over one year to avoid massive jumps
# in display.
# - For indivdual scans, the scan duration should be between a few minutes and
# several hours
# - db creation times can be between a few minutes and several hours
# - scans follow db creation
#
scans = _extract_scans_tables["scans"][0]
rows = len(scans)
rng = numpy.random.default_rng(seed=7)
def rcol():
return rng.uniform(0, 1, rows)
def day():
return numpy.timedelta64(1, 'D')
def minute():
return numpy.timedelta64(1, 'm')
scans.db_create_start = (numpy.datetime64('today', 's') + 23*59*rcol()*minute() -
365 * rcol() * day())
scans.db_create_stop = scans.db_create_start + (5 + 3 * 60 * rcol()) * minute()
scans.scan_start_date = scans.db_create_stop + (1 + 13 * rcol()) * minute()
scans.scan_stop_date = scans.scan_start_date + (5 + 3*60 * rcol()) * minute()
_extract_scans_tables["scans"][0] = scans
#
# Write all dataframes
#
for file_prefix in _extract_scans_tables.keys():
csv_fname = os.path.join(args.output_dir, file_prefix + ".csv")
frame = (_extract_scans_tables[file_prefix][0]
.astype(_table_output_dtypes[file_prefix]))
with open(csv_fname, 'w') as fh:
frame.to_csv(fh, index=False, columns=columns.columns[file_prefix], quoting=csv.QUOTE_NONNUMERIC)