Files
sarif-cli/sarif_cli/scan_tables.py
Michael Hohn ebeaced0f4 Remove automationDetails from CSV output
This reverses commit 68b43e05 to keep the CSV compatible with prior output
2023-07-17 10:30:35 -07:00

340 lines
14 KiB
Python

""" Collection of joins for the derived tables
"""
from . import snowflake_id
import logging
import numpy
import pandas as pd
import re
from sarif_cli import hash
from sarif_cli import status_writer
class ZeroResults(Exception):
pass
#
# Column types for scan-related pandas tables
#
class ScanTablesTypes:
scans = {
"id" : pd.UInt64Dtype(),
"commit_id" : pd.StringDtype(),
"project_id" : pd.UInt64Dtype(),
"db_create_start" : numpy.dtype('M'),
"db_create_stop" : numpy.dtype('M'),
"scan_start_date" : numpy.dtype('M'),
"scan_stop_date" : numpy.dtype('M'),
"tool_name" : pd.StringDtype(),
"tool_version" : pd.StringDtype(),
"tool_query_commit_id" : pd.StringDtype(),
"sarif_file_name" : pd.StringDtype(),
"results_count" : pd.Int64Dtype(),
"rules_count" : pd.Int64Dtype(),
}
results = {
'id' : pd.UInt64Dtype(),
'scan_id' : pd.UInt64Dtype(),
'query_id' : pd.StringDtype(),
'query_kind' : pd.StringDtype(),
'query_precision' : pd.StringDtype(),
'query_severity' : pd.StringDtype(),
'query_tags' : pd.StringDtype(),
'codeFlow_id' : pd.UInt64Dtype(),
'message' : pd.StringDtype(),
'message_object' : numpy.dtype('O'),
'location' : pd.StringDtype(),
'source_location' : pd.StringDtype(),
'source_startLine' : pd.Int64Dtype(),
'source_startCol' : pd.Int64Dtype(),
'source_endLine' : pd.Int64Dtype(),
'source_endCol' : pd.Int64Dtype(),
'sink_location' : pd.StringDtype(),
'sink_startLine' : pd.Int64Dtype(),
'sink_startCol' : pd.Int64Dtype(),
'sink_endLine' : pd.Int64Dtype(),
'sink_endCol' : pd.Int64Dtype(),
# TODO Find high-level info from query name or tags?
'source_object' : numpy.dtype('O'),
'sink_object' : numpy.dtype('O'),
}
projects = {
"id" : pd.UInt64Dtype(),
"project_name" : pd.StringDtype(),
"creation_date" : numpy.dtype('M'),
"repo_url" : pd.StringDtype(),
"primary_language" : pd.StringDtype(),
"languages_analyzed" : pd.StringDtype(),
# "automationDetails" : pd.StringDtype(),
}
#
# Projects table
#
def joins_for_projects(basetables, external_info):
"""
Form the 'projects' table for the ScanTables dataclass
"""
b = basetables; e = external_info
extra = ""
# if the sarif does have automationDetails
if "automationDetails" in b.project:
extra = b.project.automationDetails[0]
# if the sarif does have versionControlProvenance
if "repositoryUri" in b.project:
repoUri = b.project.repositoryUri[0]
e.project_id = hash.hash_unique((repoUri+extra).encode())
else:
repoUri = "unknown"
res = pd.DataFrame(data={
"id" : e.project_id,
"project_name" : repoUri,
"creation_date" : pd.Timestamp(0.0, unit='s'), # TODO: external info
"repo_url" : repoUri,
"primary_language" : b.project['semmle.sourceLanguage'][0],
"languages_analyzed" : ",".join(list(b.project['semmle.sourceLanguage'])),
"automationDetails" : extra,
}, index=[0])
# Force all column types to ensure appropriate formatting
res1 = res.astype(ScanTablesTypes.projects).reset_index(drop=True)
#
return res1
#
# Scans table
#
def joins_for_scans(basetables, external_info, scantables, sarif_type):
"""
Form the `scans` table for the ScanTables dataclass
"""
b = basetables; e = external_info
driver_name = b.project.driver_name.unique()
assert len(driver_name) == 1, "More than one driver name found for single sarif file."
driver_version = b.project.driver_version.unique()
assert len(driver_version) == 1, \
"More than one driver version found for single sarif file."
# TODO if commit id exists in external info for CLI gen'd sarif, add?
if sarif_type == "LGTM":
commit_id = b.project.revisionId[0]
else:
commit_id = "unknown"
res = pd.DataFrame(data={
"id" : e.scan_id,
"commit_id" : commit_id,
"project_id" : e.project_id,
# TODO extract real date information from somewhere external
"db_create_start" : pd.Timestamp(0.0, unit='s'),
"db_create_stop" : pd.Timestamp(0.0, unit='s'),
"scan_start_date" : pd.Timestamp(0.0, unit='s'),
"scan_stop_date" : pd.Timestamp(0.0, unit='s'),
#
"tool_name" : driver_name[0],
"tool_version" : driver_version[0],
"tool_query_commit_id" : pd.NA,
"sarif_file_name" : e.sarif_file_name,
"results_count" : scantables.results.shape[0],
"rules_count" : len(b.rules['id'].unique()),
},index=[0])
# Force all column types to ensure correct writing and type checks on reading.
res1 = res.astype(ScanTablesTypes.scans).reset_index(drop=True)
return res1
#
# Results table
#
def joins_for_results(basetables, external_info):
"""
Form and return the `results` table
"""
# Get one table per query_kind, then stack them,
# problem
# path-problem
#
# Concatenation with an empty table triggers type conversion to float, so don't
# include empty tables.
tables = [_results_from_kind_problem(basetables, external_info),
_results_from_kind_pathproblem(basetables, external_info)]
stack = [table for table in tables if len(table) > 0]
# Concatenation fails without at least one table, so avoid that.
if len(stack) > 0:
res = pd.concat(stack)
else:
if stack == []:
logging.warning("Zero problem/path_problem results found in sarif "
"file but processing anyway.")
status_writer.csv_write(status_writer.zero_results)
res = tables[0]
# Force all column types to ensure appropriate formatting
res1 = res.astype(ScanTablesTypes.results).reset_index(drop=True)
return res1
#id as primary key
def _populate_from_rule_table_code_flow_tag_text(basetable, flowtable):
val = flowtable.rule_id.values[0]
return basetable.rules.query("id == @val")["tag_text"].str.cat(sep='_')
#id as primary key
def _populate_from_rule_table_tag_text(basetable, i):
val = basetable.kind_problem.rule_id[i]
return basetable.rules.query("id == @val")["tag_text"].str.cat(sep='_')
#id as primary key
def _populate_from_rule_table(column_name, basetable, i):
val = basetable.kind_problem.rule_id[i]
return basetable.rules.query("id == @val")[column_name].head(1).item()
#id as primary key
def _populate_from_rule_table_code_flow(column_name, basetable, flowtable):
val = flowtable.rule_id.values[0]
return basetable.rules.query("id == @val")[column_name].head(1).item()
def _results_from_kind_problem(basetables, external_info):
b = basetables; e = external_info
flakegen = snowflake_id.Snowflake(2)
res = pd.DataFrame(
data={
'id': [flakegen.next() for _ in range(len(b.kind_problem))],
'scan_id' : e.scan_id,
'query_id' : b.kind_problem.rule_id,
'query_kind' : "problem",
'query_precision' : [_populate_from_rule_table("precision", b, i) for i in range(len(b.kind_problem))],
'query_severity' : [_populate_from_rule_table("problem.severity", b, i) for i in range(len(b.kind_problem))],
'query_tags' : [_populate_from_rule_table_tag_text(b, i) for i in range(len(b.kind_problem))],
'codeFlow_id' : 0, # link to codeflows (kind_pathproblem only, NULL here)
'message': b.kind_problem.message_text,
'message_object' : pd.NA,
'location': b.kind_problem.location_uri,
# for kind_problem, use the same location for source and sink
'source_location' : pd.NA,
'source_startLine' : b.kind_problem.location_startLine,
'source_startCol' : b.kind_problem.location_startColumn,
'source_endLine' : b.kind_problem.location_endLine,
'source_endCol' : b.kind_problem.location_endColumn,
'sink_location' : pd.NA,
'sink_startLine' : b.kind_problem.location_startLine,
'sink_startCol' : b.kind_problem.location_startColumn,
'sink_endLine' : b.kind_problem.location_endLine,
'sink_endCol' : b.kind_problem.location_endColumn,
'source_object' : pd.NA, # TODO: find high-level info from query name or tags?
'sink_object' : pd.NA,
})
# Force column type(s) to avoid floats in output.
res1 = res.astype({ 'id' : 'uint64', 'scan_id': 'uint64'}).reset_index(drop=True)
return res1
def _results_from_kind_pathproblem(basetables, external_info):
#
# Only get source and sink, no paths. This implies one codeflow_index and one
# threadflow_index, no repetitions.
#
b = basetables; e = external_info
flakegen = snowflake_id.Snowflake(3)
# The sarif tables have relatedLocation information, which result in multiple
# results for a single codeFlows_id -- the expression
# b.kind_pathproblem[b.kind_pathproblem['codeFlows_id'] == cfid0]
# produces multiple rows.
#
# The `result` table has no entry to distinguish these, so we use a simplified
# version of `kind_pathproblem`.
reduced_kind_pathp = b.kind_pathproblem.drop(
columns=[
'relatedLocation_array_index',
'relatedLocation_endColumn',
'relatedLocation_endLine',
'relatedLocation_id',
'relatedLocation_index',
'relatedLocation_message',
'relatedLocation_startColumn',
'relatedLocation_startLine',
'relatedLocation_uri',
'relatedLocation_uriBaseId',
])
# Per codeflow_id taken from b.kind_pathproblem table, it should suffice to
# take one codeflow_index, one threadflow_index, first and last location_index
# from the b.codeflows table.
#
# To ensure nothing is missed, collect all the entries and then check for
# unique rows.
cfids = reduced_kind_pathp['codeFlows_id'].unique()
source_sink_coll = []
for cfid0 in cfids:
cfid0t0 = b.codeflows[b.codeflows['codeflow_id'] == cfid0]
cfid0ppt0 = reduced_kind_pathp[reduced_kind_pathp['codeFlows_id'] ==
cfid0].drop_duplicates()
assert cfid0ppt0.shape[0] == 1, \
"Reduced kind_pathproblem table still has multiple entries"
for cfi0 in range(0, cfid0t0['codeflow_index'].max()+1):
cf0 = cfid0t0[cfid0t0['codeflow_index'] == cfi0]
for tfi0 in range(0, cf0['threadflow_index'].max()+1):
tf0 = cf0[ cf0['threadflow_index'] == tfi0 ]
loc_first = tf0['location_index'].min()
loc_last = tf0['location_index'].max()
source = tf0[tf0['location_index'] == loc_first]
sink = tf0[tf0['location_index'] == loc_last]
# Note that we're adding the unique row ids after the full table
# is done, below.
res = {
'scan_id' : e.scan_id,
'query_id' : cfid0ppt0.rule_id.values[0],
'query_kind' : "path-problem",
'query_precision' : _populate_from_rule_table_code_flow("precision", b, cfid0ppt0),
'query_severity' : _populate_from_rule_table_code_flow("problem.severity", b, cfid0ppt0),
'query_tags' : _populate_from_rule_table_code_flow_tag_text(b, cfid0ppt0),
'codeFlow_id' : cfid0,
#
'message': cfid0ppt0.message_text.values[0],
'message_object' : pd.NA,
'location': cfid0ppt0.location_uri.values[0],
#
'source_location' : source.uri.values[0],
'source_startLine' : source.startLine.values[0],
'source_startCol' : source.startColumn.values[0],
'source_endLine' : source.endLine.values[0],
'source_endCol' : source.endColumn.values[0],
#
'sink_location' : sink.uri.values[0],
'sink_startLine' : sink.startLine.values[0],
'sink_startCol' : sink.startColumn.values[0],
'sink_endLine' : sink.endLine.values[0],
'sink_endCol' : sink.endColumn.values[0],
#
'source_object' : pd.NA, # TODO: find high-level info from
# query name or tags?
'sink_object' : pd.NA,
}
source_sink_coll.append(res)
results0 = pd.DataFrame(data=source_sink_coll).drop_duplicates().reset_index(drop=True)
# Add the snowflake ids
results0['id'] = [flakegen.next() for _ in range(len(results0))]
# The 'scan_id' column is needed for astype
if len(results0) == 0:
results0['scan_id'] = []
# Force column type(s) to avoid floats in output.
results1 = results0.astype({ 'id' : 'uint64', 'scan_id': 'uint64'}).reset_index(drop=True)
return results1