mirror of
https://github.com/hohn/sarif-cli.git
synced 2025-12-16 17:23:03 +01:00
Fills the scans table's db_create_start/stop and scan_start/stop_date columns with realistic random values.
137 lines
4.0 KiB
Python
Executable File
137 lines
4.0 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
from copy import deepcopy
|
|
from datetime import datetime
|
|
import argparse
|
|
import csv
|
|
import numpy
|
|
import os
|
|
import pandas as pd
|
|
import random
|
|
|
|
from sarif_cli import scan_tables
|
|
from sarif_cli import table_joins
|
|
|
|
#
|
|
# Handle arguments
|
|
#
|
|
parser = argparse.ArgumentParser(
|
|
description="Fill the scans table's db_create_start/stop and "
|
|
"scan_start/stop_date columns with realistic random values" )
|
|
|
|
parser.add_argument('aggregate_dir', metavar='aggregate-dir', type=str,
|
|
help='Directory containing combined scan tables')
|
|
|
|
parser.add_argument('output_dir', metavar='output-dir', type=str,
|
|
help='Directory for writing the combined and padded scan tables')
|
|
|
|
args = parser.parse_args()
|
|
|
|
#
|
|
# Prepare output directory
|
|
#
|
|
try: os.mkdir(args.output_dir, mode=0o755)
|
|
except FileExistsError: pass
|
|
|
|
#
|
|
# TODO: factor out code in common with ./sarif-aggregate-scans
|
|
#
|
|
|
|
#
|
|
# Utilities
|
|
#
|
|
_extract_scans_tables = {
|
|
"scans" : [],
|
|
"results" : [],
|
|
"projects" : [],
|
|
"codeflows" : [],
|
|
}
|
|
_table_output_dtypes = {
|
|
"scans" : scan_tables.ScanTablesTypes.scans,
|
|
"results" : scan_tables.ScanTablesTypes.results,
|
|
"projects" : scan_tables.ScanTablesTypes.projects,
|
|
"codeflows" : table_joins.BaseTablesTypes.codeflows,
|
|
}
|
|
|
|
# Accomodate special dtype cases for parsing to avoid
|
|
#
|
|
# TypeError: the dtype datetime64 is not supported for parsing, pass this
|
|
# column using parse_dates instead
|
|
#
|
|
_parse_dates = {
|
|
"scans" : [],
|
|
"results" : [],
|
|
"projects" : [],
|
|
"codeflows" : [],
|
|
}
|
|
|
|
# Prep for in-place modification, use copies of original module values
|
|
_table_input_dtypes = { key: deepcopy(val) for key, val in _table_output_dtypes.items()}
|
|
|
|
# Replace datetime64 with str and track the affected columns
|
|
for tab_name, tab_dtypes in _table_input_dtypes.items():
|
|
for col_key, col_dtype in tab_dtypes.items():
|
|
# Let pandas parse datetime64 as str, then convert to date
|
|
if col_dtype == numpy.dtype('M'):
|
|
# Note: pd.StringDtype() here will cause parsing failure later
|
|
tab_dtypes[col_key] = str
|
|
_parse_dates[tab_name].append(col_key)
|
|
|
|
def _all_csv_files_exist(output_dir):
|
|
for file_prefix in _extract_scans_tables.keys():
|
|
csv_fname = os.path.join(output_dir, file_prefix + ".csv")
|
|
if not os.path.exists(csv_fname):
|
|
return False
|
|
return True
|
|
|
|
#
|
|
# Read the combined dataframes
|
|
#
|
|
for file_prefix in _extract_scans_tables.keys():
|
|
csv_fname = os.path.join(args.aggregate_dir, file_prefix + ".csv")
|
|
data = pd.read_csv(csv_fname, dtype = _table_input_dtypes[file_prefix],
|
|
parse_dates = _parse_dates[file_prefix])
|
|
_extract_scans_tables[file_prefix].append(data)
|
|
|
|
#
|
|
# Pad the dataframes
|
|
#
|
|
# ---- placeholder dates ----
|
|
# - Across scans, these should spread over one year to avoid massive jumps
|
|
# in display.
|
|
# - For indivdual scans, the scan duration should be between a few minutes and
|
|
# several hours
|
|
# - db creation times can be between a few minutes and several hours
|
|
# - scans follow db creation
|
|
#
|
|
scans = _extract_scans_tables["scans"][0]
|
|
rows = len(scans)
|
|
rng = numpy.random.default_rng(seed=7)
|
|
|
|
def rcol():
|
|
return rng.uniform(0, 1, rows)
|
|
|
|
def day():
|
|
return numpy.timedelta64(1, 'D')
|
|
|
|
def minute():
|
|
return numpy.timedelta64(1, 'm')
|
|
|
|
scans.db_create_start = (numpy.datetime64('today', 's') + 23*59*rcol()*minute() -
|
|
365 * rcol() * day())
|
|
scans.db_create_stop = scans.db_create_start + (5 + 3 * 60 * rcol()) * minute()
|
|
scans.scan_start_date = scans.db_create_stop + (1 + 13 * rcol()) * minute()
|
|
scans.scan_stop_date = scans.scan_start_date + (5 + 3*60 * rcol()) * minute()
|
|
|
|
_extract_scans_tables["scans"][0] = scans
|
|
|
|
#
|
|
# Write all dataframes
|
|
#
|
|
for file_prefix in _extract_scans_tables.keys():
|
|
csv_fname = os.path.join(args.output_dir, file_prefix + ".csv")
|
|
frame = (_extract_scans_tables[file_prefix][0]
|
|
.astype(_table_output_dtypes[file_prefix]))
|
|
with open(csv_fname, 'w') as fh:
|
|
frame.to_csv(fh, index=False, quoting=csv.QUOTE_NONNUMERIC)
|