Files
sarif-cli/sarif_cli/table_joins.py
Michael Hohn 0f070a6ae4 sarif-extract-multi: extract combined tables from multiple sarif files
This command introduces a new tree structure that pulls in a collection
of sarif files.  In yaml format, an example is

    - creation_date: '2021-12-09'   # Repository creation date
      primary_language: javascript  # By lines of code
      project_name: treeio/treeio   # Repo name-short name
      query_commit_id: fa9571646c   # Commit id for custom (non-library) queries
      sarif_content: {}             # The sarif content will be attached here
      sarif_file_name: 2021-12-09/results.sarif # Path to sarif file
      scan_start_date: '2021-12-09'             # Beginning date/time of scan
      scan_stop_date:  '2021-12-10'             # End date/time of scan
      tool_name: codeql
      tool_version: v1.27

    - creation_date: '2022-02-25'
      primary_language: javascript
      ...

At run time,

    cd ~/local/sarif-cli/data/treeio
    sarif-extract-multi multi-sarif-01.json test-multi-table

will load the specified sarif files and put them in place of
`sarif_content`, then build tables against the new signature found in
sarif_cli/signature_multi.py, and merge those into 6 larger tables.  The
exported tables are

    artifacts.csv  path-problem.csv  project.csv
    codeflows.csv  problem.csv       related-locations.csv

and they have join keys for further operations.

The new typegraph is rendered in

    notes/typegraph-multi.pdf

using the instructions in

    sarif_cli/signature_multi.py
2022-03-11 23:00:53 -08:00

317 lines
15 KiB
Python

""" Collection of joins for the base tables provided by typegraph.attach_tables()
The `problem` and `path-problem` entries provide that information; the
`relatedLocations` table provides the details when multiple results are
present for either. `project` is the high-level overview; `artifacts`
provides those for the other tables.
"""
import pandas as pd
def joins_for_sf_2683(tgraph):
"""
Join all the tables used by 2683's right side into one.
"""
# Access convenience functions
sf = lambda num: tgraph.dataframes['Struct' + str(num)]
af = lambda num: tgraph.dataframes['Array' + str(num)]
#
sf_2683 = (
#
sf(2683)
.rename(columns={"struct_id": "struct_id_2683", "id": "id_2683"})
#
.merge(sf(4963), how="left", left_on='physicalLocation', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'physicalLocation'])
#
.merge(sf(6299), how="left", left_on='region', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'region'])
#
.merge(sf(2685), how="left", left_on='artifactLocation', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'artifactLocation'])
.rename(columns={"index": "location_index_2685"})
#
.merge(sf(2774), how="left", left_on='message', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'message'])
.rename(columns={"text": "message_text_2683"})
#
)
return sf_2683
def joins_for_problem(tgraph, sf_2683):
"""
Return table providing the `problem` information.
"""
# Access convenience functions
sf = lambda num: tgraph.dataframes['Struct' + str(num)]
af = lambda num: tgraph.dataframes['Array' + str(num)]
#
# Form the message dataframe (@kind problem) via joins
#
kind_problem_1 = (
af(6343)
.rename(columns={"value_index": "results_idx_6343", "array_id": "result_id_6343"})
.merge(sf(4055), how="inner", left_on='id_or_value_at_index', right_on='struct_id',
validate="1:m")
.drop(columns=['type_at_index', 'id_or_value_at_index', 'struct_id'])
.rename(columns={"message": "result_message_4055",
"relatedLocations": "relatedLocations_id"})
# locations
.merge(af('0350'), how="left", left_on='locations', right_on='array_id', validate="1:m")
.drop(columns=['locations', 'array_id', 'type_at_index'])
#
.merge(sf_2683, how="left", left_on='id_or_value_at_index', right_on='struct_id_2683', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id_2683'])
#
.merge(sf(2774), how="left", left_on='result_message_4055', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'result_message_4055'])
.rename(columns={"text": "message_text_4055"})
#
.merge(sf(4199), how="left", left_on='partialFingerprints', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'partialFingerprints'])
#
.merge(
sf(3942).rename(columns={"id": "rule_id", "index": "rule_index"}),
how="left", left_on='rule', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'rule'])
#
)
return kind_problem_1
def joins_for_codeflows(tgraph, sf_2683):
"""
Return the table providing the `codeFlows` for a `path-problem table.
"""
# Access convenience functions
sf = lambda num: tgraph.dataframes['Struct' + str(num)]
af = lambda num: tgraph.dataframes['Array' + str(num)]
#
af_9799 = (
af(9799).rename(columns={"array_id": "t9799_array_id", "value_index": "t9799_idx"})
#
.merge(sf(7122), how="left", left_on='id_or_value_at_index', right_on='struct_id', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id', 'type_at_index'])
#
.merge(af(1597).rename(columns={"array_id": "t1597_array_id", "value_index": "t1597_idx"}),
how="left", left_on='threadFlows', right_on='t1597_array_id', validate="1:m")
.drop(columns=['threadFlows', 't1597_array_id', 'type_at_index'])
#
.merge(sf(4194), how="left", left_on='id_or_value_at_index', right_on='struct_id', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id'])
#
.merge(af(1075).rename(columns={"array_id": "t1075_array_id", "value_index": "t1075_idx"}),
how="left", left_on='locations', right_on='t1075_array_id', validate="1:m")
.drop(columns=['locations', 't1075_array_id', 'type_at_index'])
.rename(columns={"t1075_idx": "t1075_locations_idx"})
#
.merge(sf('0987'), how="left", left_on='id_or_value_at_index', right_on='struct_id', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id'])
#
.merge(sf_2683, how="left", left_on='location', right_on='struct_id_2683', validate="1:m")
.drop(columns=['location', 'struct_id_2683'])
)
return af_9799
def joins_for_path_problem(tgraph, sf_2683):
"""
Return table providing the `path-problem` information.
"""
# Access convenience functions
sf = lambda num: tgraph.dataframes['Struct' + str(num)]
af = lambda num: tgraph.dataframes['Array' + str(num)]
#
kind_pathproblem_1 = (
af(6343)
.rename(columns={"value_index": "t6343_result_idx", "array_id": "t6343_result_id"})
.merge(sf(9699), how="inner", left_on='id_or_value_at_index', right_on='struct_id',
validate="1:m")
.rename(columns={"codeFlows" : "t9699_codeFlows",
"locations" : "t9699_locations",
"message" : "t9699_message",
"partialFingerprints" : "t9699_partialFingerprints",
"relatedLocations" : "t9699_relatedLocations",
"rule" : "t9699_rule",
"ruleId" : "t9699_ruleId",
"ruleIndex" : "t9699_ruleIndex",
})
.drop(columns=['id_or_value_at_index', 'struct_id', 'type_at_index'])
# 9699.locations
.merge(af('0350').rename(columns={"value_index": "t0350_location_idx"}),
how="left", left_on='t9699_locations', right_on='array_id', validate="1:m")
.drop(columns=['t9699_locations', 'array_id', 'type_at_index'])
#
.merge(sf_2683, how="left", left_on='id_or_value_at_index', right_on='struct_id_2683', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id_2683'])
#
# # TODO: merge or keep separate?
# # 9699.codeFlows
# .merge(af_9799, how="left", left_on='t9699_codeFlows', right_on='t9799_array_id', validate="1:m")
#
# 9699.message
.merge(sf(2774), how="left", left_on='t9699_message', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 't9699_message'])
.rename(columns={"text": "t9699_message_text"})
#
# 9699.partialFingerprints
.merge(sf(4199), how="left", left_on='t9699_partialFingerprints', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 't9699_partialFingerprints'])
#
# 9699.relatedLocations -- keep ids
#
# 9699.rule
.merge(
sf(3942).rename(columns={"id": "t3942_rule_id", "index": "t3942_rule_idx"}),
how="left", left_on='t9699_rule', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 't9699_rule'])
)
# # TODO potential cleanup
# # Remove dummy locations previously injected by signature.fillsig
# kind_pathproblem_2 = kind_pathproblem_1[kind_pathproblem_1.uri != 'scli-dyys dummy value']
# #
return kind_pathproblem_1
def joins_for_relatedLocations(tgraph, sf_2683):
"""
Return table providing the `relatedLocations` and `locations` information.
"""
# Access convenience functions
sf = lambda num: tgraph.dataframes['Struct' + str(num)]
af = lambda num: tgraph.dataframes['Array' + str(num)]
#
# Form the relatedLocation dataframe via joins, starting from the union of
# relatedLocations from `kind problem` (sf(4055)) and `kind path-problem`
# (sf(9699)).
#
related_locations_1 = (
pd.concat([sf(4055)[['relatedLocations', 'struct_id']], sf(9699)[['relatedLocations', 'struct_id']]])
.merge(af('0350'), how="left", left_on='relatedLocations', right_on='array_id', validate="1:m")
.drop(columns=['relatedLocations', 'array_id', 'value_index', 'type_at_index'])
#
.merge(sf(2683), how="left", left_on='id_or_value_at_index', right_on='struct_id',
suffixes=("_4055_9699", "_2683"), validate="1:m")
.drop(columns=['struct_id_2683', 'id_or_value_at_index'])
#
.merge(sf(4963), how="left", left_on='physicalLocation', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'physicalLocation'])
#
.merge(sf(6299), how="left", left_on='region', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'region'])
#
.merge(sf(2685), how="left", left_on='artifactLocation', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'artifactLocation'])
#
.merge(sf(2774), how="left", left_on='message', right_on='struct_id', validate="1:m")
.drop(columns=['struct_id', 'message'])
)
# Keep columns of interest
related_locations_2 = (related_locations_1[['struct_id_4055_9699', 'uri', 'startLine', 'startColumn', 'endLine', 'endColumn', 'text']]
.rename({'text': 'message', 'struct_id_4055_9699': 'struct_id'}, axis='columns'))
# Remove dummy locations previously injected by signature.fillsig
related_locations_3 = related_locations_2[related_locations_2.uri != 'scli-dyys dummy value']
return related_locations_3
def joins_for_project(tgraph):
"""
Return table providing the `project` information.
"""
# Access convenience functions
sf = lambda num: tgraph.dataframes['Struct' + str(num)]
af = lambda num: tgraph.dataframes['Array' + str(num)]
#
project_df = (
af(6785)
#
.merge(sf(3739), how="left", left_on='id_or_value_at_index', right_on='struct_id', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id', 'array_id', 'type_at_index'])
#
.merge(sf(6787), how="left", left_on='sarif_content', right_on='struct_id', validate="1:m")
.drop(columns=['sarif_content', 'struct_id'])
.rename(columns={"version": "version_6787"})
#
.merge(af('0177'), how="left", left_on='runs', right_on='array_id',
suffixes=("_6785", "_0177"), validate="1:m")
.drop(columns=['runs', 'array_id', 'type_at_index'])
#
.merge(sf(3388), how="left", left_on='id_or_value_at_index', right_on='struct_id', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id'])
#
# .merge(af(7069), how="left", left_on='newlineSequences', right_on='array_id',
# validate="1:m")
# .drop(columns=['newlineSequences', 'array_id', 'type_at_index'])
.drop(columns=['newlineSequences'])
#
.merge(sf(9543), how="left", left_on='properties', right_on='struct_id', validate="1:m")
.drop(columns=['properties', 'struct_id'])
#
# tool - driver - rules - defaultConfiguration - ( properties - tags )
#
.merge(sf(8972), how="left", left_on='tool', right_on='struct_id', validate="1:m")
.drop(columns=['tool', 'struct_id'])
#
.merge(sf(7820), how="left", left_on='driver', right_on='struct_id', validate="1:m")
.drop(columns=['driver', 'struct_id'])
.rename(columns={"version": "driver_version_7820", "name": "driver_name_7820"})
#
.merge(af(8754), how="left", left_on='rules', right_on='array_id', validate="1:m")
.drop(columns=['rules', 'array_id', 'type_at_index'])
.rename(columns={"value_index": "rule_value_index_8754"}) # rule index
#
.merge(sf(6818), how="left", left_on='id_or_value_at_index', right_on='struct_id', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id'])
.rename(columns={"id": "rule_id_6818", "name": "rule_name_6818"})
#
.merge(sf(8581), how="left", left_on='defaultConfiguration', right_on='struct_id', validate="1:m")
.drop(columns=['defaultConfiguration', 'struct_id'])
#
.merge(sf(2774), how="left", left_on='fullDescription', right_on='struct_id', validate="1:m")
.drop(columns=['fullDescription', 'struct_id'])
.rename(columns={"text": "rule_fullDescription_6818"})
#
.merge(sf(2774), how="left", left_on='shortDescription', right_on='struct_id', validate="1:m")
.drop(columns=['shortDescription', 'struct_id'])
.rename(columns={"text": "rule_shortDescription_6818"})
#
.merge(sf(7849), how="left", left_on='properties', right_on='struct_id', validate="1:m")
.drop(columns=['properties', 'struct_id'])
#
.merge(af(7069), how="left", left_on='tags', right_on='array_id', validate="1:m")
.drop(columns=['tags', 'array_id', 'type_at_index'])
.rename(columns={"value_index": "tag_index_7069", "id_or_value_at_index": "tag_text_7069"})
# versionControlProvenance - repositoryUri
# The merge with af(8754) replicates versionControlProvenance, no 1:m validation
.merge(af(5511), how="left", left_on='versionControlProvenance', right_on='array_id')
.drop(columns=['versionControlProvenance', 'array_id', 'type_at_index'])
.rename(columns={"value_index": "versionControl_value_index_5511"})
#
.merge(sf(3081), how="left", left_on='id_or_value_at_index', right_on='struct_id')
.drop(columns=['id_or_value_at_index', 'struct_id'])
#
)
return project_df
def joins_for_artifacts(tgraph):
"""
Return table providing the `artifacts` information.
"""
# Access convenience functions
sf = lambda num: tgraph.dataframes['Struct' + str(num)]
af = lambda num: tgraph.dataframes['Array' + str(num)]
#
artifacts_df = (
af(4640)
#
.merge(sf(5277), how="left", left_on='id_or_value_at_index', right_on='struct_id', validate="1:m")
.drop(columns=['id_or_value_at_index', 'struct_id', 'type_at_index'])
.rename(columns={"value_index": "artifact_index_4640"})
#
.merge(sf(2685), how="left", left_on='location', right_on='struct_id', validate="1:m")
.drop(columns=['location', 'struct_id'])
.rename(columns={"index": "location_index_2685", "uri": "location_uri_2685",
"uriBaseId": "location_uriBaseId_2685"})
)
return artifacts_df