mirror of
https://github.com/hohn/sarif-cli.git
synced 2025-12-16 17:23:03 +01:00
This command introduces a new tree structure that pulls in a collection
of sarif files. In yaml format, an example is
- creation_date: '2021-12-09' # Repository creation date
primary_language: javascript # By lines of code
project_name: treeio/treeio # Repo name-short name
query_commit_id: fa9571646c # Commit id for custom (non-library) queries
sarif_content: {} # The sarif content will be attached here
sarif_file_name: 2021-12-09/results.sarif # Path to sarif file
scan_start_date: '2021-12-09' # Beginning date/time of scan
scan_stop_date: '2021-12-10' # End date/time of scan
tool_name: codeql
tool_version: v1.27
- creation_date: '2022-02-25'
primary_language: javascript
...
At run time,
cd ~/local/sarif-cli/data/treeio
sarif-extract-multi multi-sarif-01.json test-multi-table
will load the specified sarif files and put them in place of
`sarif_content`, then build tables against the new signature found in
sarif_cli/signature_multi.py, and merge those into 6 larger tables. The
exported tables are
artifacts.csv path-problem.csv project.csv
codeflows.csv problem.csv related-locations.csv
and they have join keys for further operations.
The new typegraph is rendered in
notes/typegraph-multi.pdf
using the instructions in
sarif_cli/signature_multi.py
89 lines
2.7 KiB
Python
Executable File
89 lines
2.7 KiB
Python
Executable File
#!/usr/bin/env python
|
|
""" Extract data from multiple sarif files in table form.
|
|
"""
|
|
import argparse
|
|
import json
|
|
import pathlib
|
|
from sarif_cli import signature, signature_multi
|
|
from sarif_cli import typegraph
|
|
import sarif_cli.table_joins as tj
|
|
import sys
|
|
from collections import defaultdict
|
|
import pandas as pd
|
|
|
|
#
|
|
# Start processing
|
|
#
|
|
parser = argparse.ArgumentParser(description='Read a collection of sarif files and produce tabular output.')
|
|
parser.add_argument('file', metavar='sarif-files.json', type=str,
|
|
help="json file containing the metadata array. Use - for stdin. ")
|
|
parser.add_argument('outdir', metavar='output-dir', type=str, help='output directory')
|
|
parser.add_argument('-c', '--combine-only', action="store_true",
|
|
help='Read the referenced input file(s) and write the combined structure to stdout')
|
|
args = parser.parse_args()
|
|
|
|
# Load meta info
|
|
with open(args.file, 'r') if args.file != '-' else sys.stdin as fp:
|
|
meta_struct = json.load(fp)
|
|
|
|
# Attach referenced files
|
|
def load(fname):
|
|
with open(fname, 'rb') as fp:
|
|
content = json.load(fp)
|
|
return content
|
|
|
|
for sarif_meta in meta_struct:
|
|
sarif_meta['sarif_content'] = load(sarif_meta['sarif_file_name'])
|
|
|
|
# Only output composite?
|
|
if args.combine_only:
|
|
json.dump(meta_struct, sys.stdout, indent=4)
|
|
sys.exit(0)
|
|
#
|
|
# Preprocess raw SARIF to get smaller signature
|
|
#
|
|
context = signature.Context(
|
|
{
|
|
"string" : "String",
|
|
"int" : "Int",
|
|
"bool" : "Bool"
|
|
}
|
|
)
|
|
meta_struct = signature.fillsig(args, meta_struct, context)
|
|
#
|
|
# Use reference type graph (signature) to traverse sarif and attach values to tables
|
|
#
|
|
tgraph = typegraph.Typegraph(signature_multi.struct_graph_2022_03_08)
|
|
typegraph.destructure(tgraph, signature_multi.start_node_2022_03_08, meta_struct)
|
|
#
|
|
# Form output tables
|
|
#
|
|
typegraph.attach_tables(tgraph)
|
|
#
|
|
# Form dataframes originally introduced by sarif-extract-tables
|
|
#
|
|
sf_2683 = tj.joins_for_sf_2683(tgraph)
|
|
kind_problem = tj.joins_for_problem(tgraph, sf_2683)
|
|
kind_pathproblem = tj.joins_for_path_problem(tgraph, sf_2683)
|
|
codeflows_9799 = tj.joins_for_codeflows(tgraph, sf_2683)
|
|
related_locations = tj.joins_for_relatedLocations(tgraph, sf_2683)
|
|
#
|
|
# Form the new dataframes
|
|
#
|
|
project_df = tj.joins_for_project(tgraph)
|
|
artifacts_df = tj.joins_for_artifacts(tgraph)
|
|
#
|
|
# Write output
|
|
#
|
|
p = pathlib.Path(args.outdir)
|
|
p.mkdir(exist_ok=True)
|
|
def write(path, frame):
|
|
with p.joinpath(path).open(mode='wb') as fh:
|
|
frame.to_csv(fh, index_label='index')
|
|
write('problem.csv', kind_problem)
|
|
write('path-problem.csv', kind_pathproblem)
|
|
write('codeflows.csv', codeflows_9799)
|
|
write('related-locations.csv', related_locations)
|
|
write('project.csv', project_df)
|
|
write('artifacts.csv', artifacts_df)
|