mirror of
https://github.com/hohn/sarif-cli.git
synced 2025-12-16 09:13:04 +01:00
WIP: assemble derived 'results' table
This commit is contained in:
committed by
=Michael Hohn
parent
b212423907
commit
154b0bdc56
165
sarif_cli/scan_tables.py
Normal file
165
sarif_cli/scan_tables.py
Normal file
@@ -0,0 +1,165 @@
|
||||
""" Collection of joins for the derived tables
|
||||
|
||||
"""
|
||||
import pandas as pd
|
||||
from . import snowflake_id
|
||||
|
||||
# id --
|
||||
# commit_id -- pathval(r02s01, 'commit_sha')
|
||||
# project_id -- project.id
|
||||
# db_create_start -- pathval(r02s01, 'created_at')
|
||||
# db_create_stop
|
||||
# scan_start_date
|
||||
# scan_stop_date
|
||||
# tool_name -- pathval(r02s01, 'tool', 'name')
|
||||
# tool_version -- pathval(r02s01, 'tool', 'version')
|
||||
# tool_query_commit_id -- pathval(r02, 0, 'tool', 'version') is sufficient
|
||||
# sarif_content -- r02s02
|
||||
# sarif_file_name -- used on upload
|
||||
# sarif_id -- pathval(r02s01, 'sarif_id')
|
||||
# results_count -- pathval(r02s01, 'results_count')
|
||||
# rules_count -- pathval(r02s01, 'rules_count')
|
||||
#
|
||||
def joins_for_scans(basetables, external_info):
|
||||
"""
|
||||
Return the `scans` table
|
||||
"""
|
||||
# XX
|
||||
pass
|
||||
|
||||
#
|
||||
# Results table
|
||||
#
|
||||
def joins_for_results(basetables, external_info):
|
||||
"""
|
||||
Form and return the `results` table
|
||||
"""
|
||||
# Get one table per result_type, then stack them,
|
||||
# (kind_problem,
|
||||
# kind_pathproblem,
|
||||
# )
|
||||
return pd.concat([_results_from_kind_problem(basetables, external_info),
|
||||
_results_from_kind_pathproblem(basetables, external_info)])
|
||||
|
||||
def _results_from_kind_problem(basetables, external_info):
|
||||
b = basetables; e = external_info
|
||||
flakegen = snowflake_id.Snowflake(2)
|
||||
res = pd.DataFrame(data={
|
||||
'id': [flakegen.next() for _ in range(len(b.kind_problem))],
|
||||
|
||||
'scan_id' : e.scan_id,
|
||||
'query_id' : e.ql_query_id,
|
||||
|
||||
'result_type' : "kind_problem",
|
||||
'codeFlow_id' : 0, # link to codeflows (kind_pathproblem only, NULL here)
|
||||
|
||||
'message': b.kind_problem.message_text,
|
||||
'message_object' : pd.NA,
|
||||
'location': b.kind_problem.location_uri,
|
||||
|
||||
# for kind_problem, use the same location for source and sink
|
||||
'source_startLine' : b.kind_problem.location_startLine,
|
||||
'source_startCol' : b.kind_problem.location_startColumn,
|
||||
'source_endLine' : b.kind_problem.location_endLine,
|
||||
'source_endCol' : b.kind_problem.location_endColumn,
|
||||
|
||||
'sink_startLine' : b.kind_problem.location_startLine,
|
||||
'sink_startCol' : b.kind_problem.location_startColumn,
|
||||
'sink_endLine' : b.kind_problem.location_endLine,
|
||||
'sink_endCol' : b.kind_problem.location_endColumn,
|
||||
|
||||
'source_object' : pd.NA, # TODO: find high-level info from query name or tags?
|
||||
'sink_object' : pd.NA,
|
||||
})
|
||||
return res
|
||||
|
||||
|
||||
def _results_from_kind_pathproblem(basetables, external_info):
|
||||
#
|
||||
# Only get source and sink, no paths. This implies one codeflow_index and one
|
||||
# threadflow_index, no repetitions.
|
||||
#
|
||||
b = basetables; e = external_info
|
||||
flakegen = snowflake_id.Snowflake(3)
|
||||
|
||||
# The sarif tables have relatedLocation information, which result in multiple
|
||||
# results for a single codeFlows_id -- the expression
|
||||
# b.kind_pathproblem[b.kind_pathproblem['codeFlows_id'] == cfid0]
|
||||
# produces multiple rows.
|
||||
#
|
||||
# The `result` table has no entry to distinguish these, so we use a simplified
|
||||
# version of `kind_pathproblem`.
|
||||
|
||||
reduced_kind_pathp = b.kind_pathproblem.drop(
|
||||
columns=[
|
||||
'relatedLocation_array_index',
|
||||
'relatedLocation_endColumn',
|
||||
'relatedLocation_endLine',
|
||||
'relatedLocation_id',
|
||||
'relatedLocation_index',
|
||||
'relatedLocation_message',
|
||||
'relatedLocation_startColumn',
|
||||
'relatedLocation_startLine',
|
||||
'relatedLocation_uri',
|
||||
'relatedLocation_uriBaseId',
|
||||
])
|
||||
|
||||
# Per codeflow_id taken from b.kind_pathproblem table, it should suffice to
|
||||
# take one codeflow_index, one threadflow_index, first and last location_index
|
||||
# from the b.codeflows table.
|
||||
#
|
||||
# To ensure nothing is missed, collect all the entries and then check for
|
||||
# unique rows.
|
||||
cfids = reduced_kind_pathp['codeFlows_id'].unique()
|
||||
|
||||
source_sink_coll = []
|
||||
for cfid0 in cfids:
|
||||
cfid0t0 = b.codeflows[b.codeflows['codeflow_id'] == cfid0]
|
||||
cfid0ppt0 = reduced_kind_pathp[reduced_kind_pathp['codeFlows_id'] ==
|
||||
cfid0].drop_duplicates()
|
||||
assert cfid0ppt0.shape[0] == 1, \
|
||||
"Reduced kind_pathproblem table still has multiple entries"
|
||||
for cfi0 in range(0, cfid0t0['codeflow_index'].max()+1):
|
||||
cf0 = cfid0t0[cfid0t0['codeflow_index'] == cfi0]
|
||||
for tfi0 in range(0, cf0['threadflow_index'].max()+1):
|
||||
tf0 = cf0[ cf0['threadflow_index'] == tfi0 ]
|
||||
loc_first = tf0['location_index'].min()
|
||||
loc_last = tf0['location_index'].max()
|
||||
source = tf0[tf0['location_index'] == loc_first]
|
||||
sink = tf0[tf0['location_index'] == loc_last]
|
||||
# Note that we're adding the unique row ids after the full table
|
||||
# is done, below.
|
||||
res = {
|
||||
'scan_id' : e.scan_id,
|
||||
'query_id' : e.ql_query_id,
|
||||
#
|
||||
'result_type' : "kind_pathproblem",
|
||||
'codeFlow_id' : cfid0,
|
||||
#
|
||||
'message': cfid0ppt0.message_text.values[0],
|
||||
'message_object' : pd.NA,
|
||||
'location': cfid0ppt0.location_uri.values[0],
|
||||
#
|
||||
'source_location' : source.uri.values[0],
|
||||
'source_startLine' : source.startLine.values[0],
|
||||
'source_startCol' : source.startColumn.values[0],
|
||||
'source_endLine' : source.endLine.values[0],
|
||||
'source_endCol' : source.endColumn.values[0],
|
||||
#
|
||||
'sink_location' : sink.uri.values[0],
|
||||
'sink_startLine' : sink.startLine.values[0],
|
||||
'sink_startCol' : sink.startColumn.values[0],
|
||||
'sink_endLine' : sink.endLine.values[0],
|
||||
'sink_endCol' : sink.endColumn.values[0],
|
||||
#
|
||||
'source_object' : pd.NA, # TODO: find high-level info from
|
||||
# query name or tags?
|
||||
'sink_object' : pd.NA,
|
||||
}
|
||||
source_sink_coll.append(res)
|
||||
results0 = pd.DataFrame(data=source_sink_coll).drop_duplicates().reset_index(drop=True)
|
||||
|
||||
# Now add the snowflake ids
|
||||
results0['id'] = [flakegen.next() for _ in range(len(results0))]
|
||||
|
||||
return results0
|
||||
Reference in New Issue
Block a user