Files
codeql/shared/rangeanalysis/codeql/rangeanalysis/RangeAnalysis.qll
Anders Schack-Mulligen bf6cfd3bef Rangeanalysis: Simplify api.
2023-11-13 10:35:44 +01:00

1447 lines
47 KiB
Plaintext

/**
* Provides classes and predicates for range analysis.
*
* An inferred bound can either be a specific integer, the abstract value of an
* SSA variable, or the abstract value of an interesting expression. The latter
* category includes array lengths that are not SSA variables.
*
* If an inferred bound relies directly on a condition, then this condition is
* reported as the reason for the bound.
*/
/*
* This library tackles range analysis as a flow problem. Consider e.g.:
* ```
* len = arr.length;
* if (x < len) { ... y = x-1; ... y ... }
* ```
* In this case we would like to infer `y <= arr.length - 2`, and this is
* accomplished by tracking the bound through a sequence of steps:
* ```
* arr.length --> len = .. --> x < len --> x-1 --> y = .. --> y
* ```
*
* In its simplest form the step relation `E1 --> E2` relates two expressions
* such that `E1 <= B` implies `E2 <= B` for any `B` (with a second separate
* step relation handling lower bounds). Examples of such steps include
* assignments `E2 = E1` and conditions `x <= E1` where `E2` is a use of `x`
* guarded by the condition.
*
* In order to handle subtractions and additions with constants, and strict
* comparisons, the step relation is augmented with an integer delta. With this
* generalization `E1 --(delta)--> E2` relates two expressions and an integer
* such that `E1 <= B` implies `E2 <= B + delta` for any `B`. This corresponds
* to the predicate `boundFlowStep`.
*
* The complete range analysis is then implemented as the transitive closure of
* the step relation summing the deltas along the way. If `E1` transitively
* steps to `E2`, `delta` is the sum of deltas along the path, and `B` is an
* interesting bound equal to the value of `E1` then `E2 <= B + delta`. This
* corresponds to the predicate `bounded`.
*
* Phi nodes need a little bit of extra handling. Consider `x0 = phi(x1, x2)`.
* There are essentially two cases:
* - If `x1 <= B + d1` and `x2 <= B + d2` then `x0 <= B + max(d1,d2)`.
* - If `x1 <= B + d1` and `x2 <= x0 + d2` with `d2 <= 0` then `x0 <= B + d1`.
* The first case is for whenever a bound can be proven without taking looping
* into account. The second case is relevant when `x2` comes from a back-edge
* where we can prove that the variable has been non-increasing through the
* loop-iteration as this means that any upper bound that holds prior to the
* loop also holds for the variable during the loop.
* This generalizes to a phi node with `n` inputs, so if
* `x0 = phi(x1, ..., xn)` and `xi <= B + delta` for one of the inputs, then we
* also have `x0 <= B + delta` if we can prove either:
* - `xj <= B + d` with `d <= delta` or
* - `xj <= x0 + d` with `d <= 0`
* for each input `xj`.
*
* As all inferred bounds can be related directly to a path in the source code
* the only source of non-termination is if successive redundant (and thereby
* increasingly worse) bounds are calculated along a loop in the source code.
* We prevent this by weakening the bound to a small finite set of bounds when
* a path follows a second back-edge (we postpone weakening till the second
* back-edge as a precise bound might require traversing a loop once).
*/
private import codeql.util.Location
signature module Semantic {
class Expr {
string toString();
BasicBlock getBasicBlock();
}
class ConstantIntegerExpr extends Expr {
int getIntValue();
}
class BinaryExpr extends Expr {
Expr getLeftOperand();
Expr getRightOperand();
Expr getAnOperand();
predicate hasOperands(Expr e1, Expr e2);
}
class AddExpr extends BinaryExpr;
class SubExpr extends BinaryExpr;
class MulExpr extends BinaryExpr;
class DivExpr extends BinaryExpr;
class RemExpr extends BinaryExpr;
class BitAndExpr extends BinaryExpr;
class BitOrExpr extends BinaryExpr;
class ShiftLeftExpr extends BinaryExpr;
class ShiftRightExpr extends BinaryExpr;
class ShiftRightUnsignedExpr extends BinaryExpr;
default predicate isAssignOp(BinaryExpr bin) { none() }
class RelationalExpr extends Expr {
Expr getLesserOperand();
Expr getGreaterOperand();
predicate isStrict();
}
class UnaryExpr extends Expr {
Expr getOperand();
}
class ConvertExpr extends UnaryExpr;
class BoxExpr extends UnaryExpr;
class UnboxExpr extends UnaryExpr;
class NegateExpr extends UnaryExpr;
class PreIncExpr extends UnaryExpr;
class PreDecExpr extends UnaryExpr;
class PostIncExpr extends UnaryExpr;
class PostDecExpr extends UnaryExpr;
class CopyValueExpr extends UnaryExpr;
class ConditionalExpr extends Expr {
Expr getBranchExpr(boolean branch);
}
class BasicBlock {
/** Holds if this block (transitively) dominates `otherblock`. */
predicate bbDominates(BasicBlock otherBlock);
}
/** Gets an immediate successor of basic block `bb`, if any. */
BasicBlock getABasicBlockSuccessor(BasicBlock bb);
/**
* Gets an ideally unique integer for `bb`. If it is undesirable to make this
* unique, then `getBlock2` must provide a tiebreaker, such that the pair
* `(getBlockId1(bb),getBlockId2(bb))` becomes unique.
*/
int getBlockId1(BasicBlock bb);
/** Gets a tiebreaker id in case `getBlockId1` is not unique. */
default string getBlockId2(BasicBlock bb) { result = "" }
class Guard {
string toString();
BasicBlock getBasicBlock();
Expr asExpr();
predicate directlyControls(BasicBlock controlled, boolean branch);
predicate isEquality(Expr e1, Expr e2, boolean polarity);
predicate hasBranchEdge(BasicBlock bb1, BasicBlock bb2, boolean branch);
}
predicate implies_v2(Guard g1, boolean b1, Guard g2, boolean b2);
class Type;
class IntegerType extends Type {
predicate isSigned();
int getByteSize();
}
class FloatingPointType extends Type;
class AddressType extends Type;
/** Gets the type of an SSA variable. */
Type getSsaType(SsaVariable var);
/** Gets the type of an expression. */
Type getExprType(Expr e);
class SsaVariable {
Expr getAUse();
BasicBlock getBasicBlock();
}
class SsaPhiNode extends SsaVariable {
/** Holds if `inp` is an input to the phi node along the edge originating in `bb`. */
predicate hasInputFromBlock(SsaVariable inp, BasicBlock bb);
}
class SsaExplicitUpdate extends SsaVariable {
Expr getDefiningExpr();
}
/**
* Holds if the value of `dest` is known to be `src + delta`.
*/
predicate additionalValueFlowStep(Expr dest, Expr src, int delta);
predicate conversionCannotOverflow(Type fromType, Type toType);
}
signature module SignAnalysisSig<Semantic Sem> {
/** Holds if `e` can be positive and cannot be negative. */
predicate semPositive(Sem::Expr e);
/** Holds if `e` can be negative and cannot be positive. */
predicate semNegative(Sem::Expr e);
/** Holds if `e` is strictly positive. */
predicate semStrictlyPositive(Sem::Expr e);
/** Holds if `e` is strictly negative. */
predicate semStrictlyNegative(Sem::Expr e);
/**
* Holds if `e` may have positive values. This does not rule out the
* possibility for negative values.
*/
predicate semMayBePositive(Sem::Expr e);
/**
* Holds if `e` may have negative values. This does not rule out the
* possibility for positive values.
*/
predicate semMayBeNegative(Sem::Expr e);
}
signature module ModulusAnalysisSig<Semantic Sem> {
class ModBound;
predicate exprModulus(Sem::Expr e, ModBound b, int val, int mod);
}
signature module DeltaSig {
bindingset[this]
class Delta;
bindingset[d]
bindingset[result]
float toFloat(Delta d);
bindingset[d]
bindingset[result]
int toInt(Delta d);
bindingset[n]
bindingset[result]
Delta fromInt(int n);
bindingset[f]
Delta fromFloat(float f);
}
signature module LangSig<Semantic Sem, DeltaSig D> {
/**
* Holds if `e >= bound` (if `upper = false`) or `e <= bound` (if `upper = true`).
*/
predicate hasConstantBound(Sem::Expr e, D::Delta bound, boolean upper);
/**
* Holds if `e2 >= e1 + delta` (if `upper = false`) or `e2 <= e1 + delta` (if `upper = true`).
*/
predicate additionalBoundFlowStep(Sem::Expr e2, Sem::Expr e1, D::Delta delta, boolean upper);
/**
* Ignore the bound on this expression.
*
* This predicate is to keep the results identical to the original Java implementation. It should be
* removed once we have the new implementation matching the old results exactly.
*/
predicate ignoreExprBound(Sem::Expr e);
default predicate javaCompatibility() { none() }
}
signature module BoundSig<LocationSig Location, Semantic Sem, DeltaSig D> {
class SemBound {
string toString();
Location getLocation();
Sem::Expr getExpr(D::Delta delta);
}
class SemZeroBound extends SemBound;
class SemSsaBound extends SemBound {
Sem::SsaVariable getVariable();
}
}
signature module OverflowSig<Semantic Sem, DeltaSig D> {
predicate semExprDoesNotOverflow(boolean positively, Sem::Expr expr);
}
module RangeStage<
LocationSig Location, Semantic Sem, DeltaSig D, BoundSig<Location, Sem, D> Bounds,
OverflowSig<Sem, D> OverflowParam, LangSig<Sem, D> LangParam, SignAnalysisSig<Sem> SignAnalysis,
ModulusAnalysisSig<Sem> ModulusAnalysisParam>
{
private import Bounds
private import LangParam
private import D
private import OverflowParam
private import SignAnalysis
private import ModulusAnalysisParam
private import internal.RangeUtils::MakeUtils<Sem, D>
/**
* An expression that does conversion, boxing, or unboxing
*/
private class ConvertOrBoxExpr instanceof Sem::UnaryExpr {
ConvertOrBoxExpr() {
this instanceof Sem::ConvertExpr
or
this instanceof Sem::BoxExpr
or
this instanceof Sem::UnboxExpr
}
string toString() { result = super.toString() }
Sem::Expr getOperand() { result = super.getOperand() }
}
/**
* Holds if `typ` is a small integral type with the given lower and upper bounds.
*/
private predicate typeBound(Sem::IntegerType typ, float lowerbound, float upperbound) {
exists(int bitSize | bitSize = typ.getByteSize() * 8 |
if typ.isSigned()
then (
upperbound = 2.pow(bitSize - 1) - 1 and
lowerbound = -upperbound - 1
) else (
lowerbound = 0 and
upperbound = 2.pow(bitSize) - 1
)
)
}
/**
* A cast that can be ignored for the purpose of range analysis.
*/
private class SafeCastExpr extends ConvertOrBoxExpr {
SafeCastExpr() {
Sem::conversionCannotOverflow(Sem::getExprType(pragma[only_bind_into](this.getOperand())),
pragma[only_bind_out](Sem::getExprType(this)))
}
}
/**
* A cast to a small integral type that may overflow or underflow.
*/
private class NarrowingCastExpr extends ConvertOrBoxExpr {
NarrowingCastExpr() {
not this instanceof SafeCastExpr and
typeBound(Sem::getExprType(this), _, _)
}
/** Gets the lower bound of the resulting type. */
float getLowerBound() { typeBound(Sem::getExprType(this), result, _) }
/** Gets the upper bound of the resulting type. */
float getUpperBound() { typeBound(Sem::getExprType(this), _, result) }
}
cached
private module RangeAnalysisCache {
cached
module RangeAnalysisPublic {
/**
* Holds if `b + delta` is a valid bound for `e`.
* - `upper = true` : `e <= b + delta`
* - `upper = false` : `e >= b + delta`
*
* The reason for the bound is given by `reason` and may be either a condition
* or `NoReason` if the bound was proven directly without the use of a bounding
* condition.
*/
cached
predicate semBounded(Sem::Expr e, SemBound b, D::Delta delta, boolean upper, SemReason reason) {
bounded(e, b, delta, upper, _, _, reason) and
bestBound(e, b, delta, upper)
}
}
/**
* Holds if `guard = boundFlowCond(_, _, _, _, _) or guard = eqFlowCond(_, _, _, _, _)`.
*/
cached
predicate possibleReason(Sem::Guard guard) {
guard = boundFlowCond(_, _, _, _, _) or guard = eqFlowCond(_, _, _, _, _)
}
}
private import RangeAnalysisCache
import RangeAnalysisPublic
/**
* Holds if `b + delta` is a valid bound for `e` and this is the best such delta.
* - `upper = true` : `e <= b + delta`
* - `upper = false` : `e >= b + delta`
*/
private predicate bestBound(Sem::Expr e, SemBound b, D::Delta delta, boolean upper) {
delta = min(D::Delta d | bounded(e, b, d, upper, _, _, _) | d order by D::toFloat(d)) and
upper = true
or
delta = max(D::Delta d | bounded(e, b, d, upper, _, _, _) | d order by D::toFloat(d)) and
upper = false
}
/**
* Holds if `comp` corresponds to:
* - `upper = true` : `v <= e + delta` or `v < e + delta`
* - `upper = false` : `v >= e + delta` or `v > e + delta`
*/
private predicate boundCondition(
Sem::RelationalExpr comp, Sem::SsaVariable v, Sem::Expr e, D::Delta delta, boolean upper
) {
comp.getLesserOperand() = ssaRead(v, delta) and
e = comp.getGreaterOperand() and
upper = true
or
comp.getGreaterOperand() = ssaRead(v, delta) and
e = comp.getLesserOperand() and
upper = false
or
exists(Sem::SubExpr sub, Sem::ConstantIntegerExpr c, D::Delta d |
// (v - d) - e < c
comp.getLesserOperand() = sub and
comp.getGreaterOperand() = c and
sub.getLeftOperand() = ssaRead(v, d) and
sub.getRightOperand() = e and
upper = true and
delta = D::fromFloat(D::toFloat(d) + c.getIntValue())
or
// (v - d) - e > c
comp.getGreaterOperand() = sub and
comp.getLesserOperand() = c and
sub.getLeftOperand() = ssaRead(v, d) and
sub.getRightOperand() = e and
upper = false and
delta = D::fromFloat(D::toFloat(d) + c.getIntValue())
or
// e - (v - d) < c
comp.getLesserOperand() = sub and
comp.getGreaterOperand() = c and
sub.getLeftOperand() = e and
sub.getRightOperand() = ssaRead(v, d) and
upper = false and
delta = D::fromFloat(D::toFloat(d) - c.getIntValue())
or
// e - (v - d) > c
comp.getGreaterOperand() = sub and
comp.getLesserOperand() = c and
sub.getLeftOperand() = e and
sub.getRightOperand() = ssaRead(v, d) and
upper = true and
delta = D::fromFloat(D::toFloat(d) - c.getIntValue())
)
}
/**
* Holds if `comp` is a comparison between `x` and `y` for which `y - x` has a
* fixed value modulo some `mod > 1`, such that the comparison can be
* strengthened by `strengthen` when evaluating to `testIsTrue`.
*/
private predicate modulusComparison(Sem::RelationalExpr comp, boolean testIsTrue, int strengthen) {
exists(
ModBound b, int v1, int v2, int mod1, int mod2, int mod, boolean resultIsStrict, int d, int k
|
// If `x <= y` and `x =(mod) b + v1` and `y =(mod) b + v2` then
// `0 <= y - x =(mod) v2 - v1`. By choosing `k =(mod) v2 - v1` with
// `0 <= k < mod` we get `k <= y - x`. If the resulting comparison is
// strict then the strengthening amount is instead `k - 1` modulo `mod`:
// `x < y` means `0 <= y - x - 1 =(mod) k - 1` so `k - 1 <= y - x - 1` and
// thus `k - 1 < y - x` with `0 <= k - 1 < mod`.
exprModulus(comp.getLesserOperand(), b, v1, mod1) and
exprModulus(comp.getGreaterOperand(), b, v2, mod2) and
mod = mod1.gcd(mod2) and
mod != 1 and
(testIsTrue = true or testIsTrue = false) and
(
if comp.isStrict()
then resultIsStrict = testIsTrue
else resultIsStrict = testIsTrue.booleanNot()
) and
(
resultIsStrict = true and d = 1
or
resultIsStrict = false and d = 0
) and
(
testIsTrue = true and k = v2 - v1
or
testIsTrue = false and k = v1 - v2
) and
strengthen = (((k - d) % mod) + mod) % mod
)
}
/**
* Gets a condition that tests whether `v` is bounded by `e + delta`.
*
* If the condition evaluates to `testIsTrue`:
* - `upper = true` : `v <= e + delta`
* - `upper = false` : `v >= e + delta`
*/
private Sem::Guard boundFlowCond(
Sem::SsaVariable v, Sem::Expr e, D::Delta delta, boolean upper, boolean testIsTrue
) {
exists(
Sem::RelationalExpr comp, D::Delta d1, float d2, float d3, int strengthen,
boolean compIsUpper, boolean resultIsStrict
|
comp = result.asExpr() and
boundCondition(comp, v, e, d1, compIsUpper) and
(testIsTrue = true or testIsTrue = false) and
upper = compIsUpper.booleanXor(testIsTrue.booleanNot()) and
(
if comp.isStrict()
then resultIsStrict = testIsTrue
else resultIsStrict = testIsTrue.booleanNot()
) and
(
if
Sem::getSsaType(v) instanceof Sem::IntegerType or
Sem::getSsaType(v) instanceof Sem::AddressType
then
upper = true and strengthen = -1
or
upper = false and strengthen = 1
else strengthen = 0
) and
(
exists(int k | modulusComparison(comp, testIsTrue, k) and d2 = strengthen * k)
or
not modulusComparison(comp, testIsTrue, _) and d2 = 0
) and
// A strict inequality `x < y` can be strengthened to `x <= y - 1`.
(
resultIsStrict = true and d3 = strengthen
or
resultIsStrict = false and d3 = 0
) and
delta = D::fromFloat(D::toFloat(d1) + d2 + d3)
)
or
exists(boolean testIsTrue0 |
Sem::implies_v2(result, testIsTrue, boundFlowCond(v, e, delta, upper, testIsTrue0),
testIsTrue0)
)
or
result = eqFlowCond(v, e, delta, true, testIsTrue) and
(upper = true or upper = false)
or
// guard that tests whether `v2` is bounded by `e + delta + d1 - d2` and
// exists a guard `guardEq` such that `v = v2 - d1 + d2`.
exists(Sem::SsaVariable v2, D::Delta oldDelta, float d |
// equality needs to control guard
result.getBasicBlock() = eqSsaCondDirectlyControls(v, v2, d) and
result = boundFlowCond(v2, e, oldDelta, upper, testIsTrue) and
delta = D::fromFloat(D::toFloat(oldDelta) + d)
)
}
/**
* Gets a basic block in which `v1` equals `v2 + delta`.
*/
pragma[nomagic]
private Sem::BasicBlock eqSsaCondDirectlyControls(
Sem::SsaVariable v1, Sem::SsaVariable v2, float delta
) {
exists(Sem::Guard guardEq, D::Delta d1, D::Delta d2, boolean eqIsTrue |
guardEq = eqFlowCond(v1, ssaRead(v2, d1), d2, true, eqIsTrue) and
delta = D::toFloat(d2) - D::toFloat(d1) and
guardEq.directlyControls(result, eqIsTrue)
)
}
private newtype TSemReason =
TSemNoReason() or
TSemCondReason(Sem::Guard guard) { possibleReason(guard) }
/**
* A reason for an inferred bound. This can either be `CondReason` if the bound
* is due to a specific condition, or `NoReason` if the bound is inferred
* without going through a bounding condition.
*/
abstract class SemReason extends TSemReason {
/** Gets a textual representation of this reason. */
abstract string toString();
}
/**
* A reason for an inferred bound that indicates that the bound is inferred
* without going through a bounding condition.
*/
class SemNoReason extends SemReason, TSemNoReason {
override string toString() { result = "NoReason" }
}
/** A reason for an inferred bound pointing to a condition. */
class SemCondReason extends SemReason, TSemCondReason {
/** Gets the condition that is the reason for the bound. */
Sem::Guard getCond() { this = TSemCondReason(result) }
override string toString() { result = this.getCond().toString() }
}
/**
* Holds if `e + delta` is a valid bound for `v` at `pos`.
* - `upper = true` : `v <= e + delta`
* - `upper = false` : `v >= e + delta`
*/
private predicate boundFlowStepSsa(
Sem::SsaVariable v, SsaReadPosition pos, Sem::Expr e, D::Delta delta, boolean upper,
SemReason reason
) {
ssaUpdateStep(v, e, delta) and
pos.hasReadOfVar(v) and
(upper = true or upper = false) and
reason = TSemNoReason()
or
exists(Sem::Guard guard, boolean testIsTrue |
pos.hasReadOfVar(v) and
guard = boundFlowCond(v, e, delta, upper, testIsTrue) and
guardDirectlyControlsSsaRead(guard, pos, testIsTrue) and
reason = TSemCondReason(guard)
)
}
/** Holds if `v != e + delta` at `pos` and `v` is of integral type. */
private predicate unequalFlowStepIntegralSsa(
Sem::SsaVariable v, SsaReadPosition pos, Sem::Expr e, D::Delta delta, SemReason reason
) {
Sem::getSsaType(v) instanceof Sem::IntegerType and
exists(Sem::Guard guard, boolean testIsTrue |
pos.hasReadOfVar(v) and
guard = eqFlowCond(v, e, delta, false, testIsTrue) and
guardDirectlyControlsSsaRead(guard, pos, testIsTrue) and
reason = TSemCondReason(guard)
)
}
/** Holds if `e >= 1` as determined by sign analysis. */
private predicate strictlyPositiveIntegralExpr(Sem::Expr e) {
semStrictlyPositive(e) and Sem::getExprType(e) instanceof Sem::IntegerType
}
/** Holds if `e <= -1` as determined by sign analysis. */
private predicate strictlyNegativeIntegralExpr(Sem::Expr e) {
semStrictlyNegative(e) and Sem::getExprType(e) instanceof Sem::IntegerType
}
/**
* Holds if `e1 + delta` is a valid bound for `e2`.
* - `upper = true` : `e2 <= e1 + delta`
* - `upper = false` : `e2 >= e1 + delta`
*/
private predicate boundFlowStep(Sem::Expr e2, Sem::Expr e1, D::Delta delta, boolean upper) {
valueFlowStep(e2, e1, delta) and
(upper = true or upper = false)
or
e2.(SafeCastExpr).getOperand() = e1 and
delta = D::fromInt(0) and
(upper = true or upper = false)
or
javaCompatibility() and
exists(Sem::Expr x, Sem::SubExpr sub |
e2 = sub and
sub.getLeftOperand() = e1 and
sub.getRightOperand() = x
|
// `x instanceof ConstantIntegerExpr` is covered by valueFlowStep
not x instanceof Sem::ConstantIntegerExpr and
if strictlyPositiveIntegralExpr(x)
then upper = true and delta = D::fromInt(-1)
else
if semPositive(x)
then upper = true and delta = D::fromInt(0)
else
if strictlyNegativeIntegralExpr(x)
then upper = false and delta = D::fromInt(1)
else
if semNegative(x)
then upper = false and delta = D::fromInt(0)
else none()
)
or
e2.(Sem::RemExpr).getRightOperand() = e1 and
semPositive(e1) and
delta = D::fromInt(-1) and
upper = true
or
e2.(Sem::RemExpr).getLeftOperand() = e1 and
semPositive(e1) and
delta = D::fromInt(0) and
upper = true
or
e2.(Sem::BitAndExpr).getAnOperand() = e1 and
semPositive(e1) and
delta = D::fromInt(0) and
upper = true
or
e2.(Sem::BitOrExpr).getAnOperand() = e1 and
semPositive(e2) and
delta = D::fromInt(0) and
upper = false
or
additionalBoundFlowStep(e2, e1, delta, upper)
}
/** Holds if `e2 = e1 * factor` and `factor > 0`. */
private predicate boundFlowStepMul(Sem::Expr e2, Sem::Expr e1, D::Delta factor) {
exists(Sem::ConstantIntegerExpr c, int k | k = c.getIntValue() and k > 0 |
e2.(Sem::MulExpr).hasOperands(e1, c) and factor = D::fromInt(k)
or
exists(Sem::ShiftLeftExpr e |
e = e2 and
e.getLeftOperand() = e1 and
e.getRightOperand() = c and
factor = D::fromInt(2.pow(k))
)
)
}
/**
* Holds if `e2 = e1 / factor` and `factor > 0`.
*
* This conflates division, right shift, and unsigned right shift and is
* therefore only valid for non-negative numbers.
*/
private predicate boundFlowStepDiv(Sem::Expr e2, Sem::Expr e1, D::Delta factor) {
Sem::getExprType(e2) instanceof Sem::IntegerType and
exists(Sem::ConstantIntegerExpr c, D::Delta k |
k = D::fromInt(c.getIntValue()) and D::toFloat(k) > 0
|
exists(Sem::DivExpr e |
e = e2 and e.getLeftOperand() = e1 and e.getRightOperand() = c and factor = k
)
or
exists(Sem::ShiftRightExpr e |
e = e2 and
e.getLeftOperand() = e1 and
e.getRightOperand() = c and
factor = D::fromInt(2.pow(D::toInt(k)))
)
or
exists(Sem::ShiftRightUnsignedExpr e |
e = e2 and
e.getLeftOperand() = e1 and
e.getRightOperand() = c and
factor = D::fromInt(2.pow(D::toInt(k)))
)
)
}
/**
* Holds if `b + delta` is a valid bound for `v` at `pos`.
* - `upper = true` : `v <= b + delta`
* - `upper = false` : `v >= b + delta`
*/
private predicate boundedSsa(
Sem::SsaVariable v, SemBound b, D::Delta delta, SsaReadPosition pos, boolean upper,
boolean fromBackEdge, D::Delta origdelta, SemReason reason
) {
exists(Sem::Expr mid, D::Delta d1, D::Delta d2, SemReason r1, SemReason r2 |
boundFlowStepSsa(v, pos, mid, d1, upper, r1) and
bounded(mid, b, d2, upper, fromBackEdge, origdelta, r2) and
// upper = true: v <= mid + d1 <= b + d1 + d2 = b + delta
// upper = false: v >= mid + d1 >= b + d1 + d2 = b + delta
delta = D::fromFloat(D::toFloat(d1) + D::toFloat(d2)) and
(if r1 instanceof SemNoReason then reason = r2 else reason = r1)
)
or
exists(D::Delta d, SemReason r1, SemReason r2 |
boundedSsa(v, b, d, pos, upper, fromBackEdge, origdelta, r2)
or
boundedPhi(v, b, d, upper, fromBackEdge, origdelta, r2)
|
unequalIntegralSsa(v, b, d, pos, r1) and
(
upper = true and delta = D::fromFloat(D::toFloat(d) - 1)
or
upper = false and delta = D::fromFloat(D::toFloat(d) + 1)
) and
(
reason = r1
or
reason = r2 and not r2 instanceof SemNoReason
)
)
}
/**
* Holds if `v != b + delta` at `pos` and `v` is of integral type.
*/
private predicate unequalIntegralSsa(
Sem::SsaVariable v, SemBound b, D::Delta delta, SsaReadPosition pos, SemReason reason
) {
exists(Sem::Expr e, D::Delta d1, D::Delta d2 |
unequalFlowStepIntegralSsa(v, pos, e, d1, reason) and
bounded(e, b, d2, true, _, _, _) and
bounded(e, b, d2, false, _, _, _) and
delta = D::fromFloat(D::toFloat(d1) + D::toFloat(d2))
)
}
/** Weakens a delta to lie in the range `[-1..1]`. */
bindingset[delta, upper]
private D::Delta weakenDelta(boolean upper, D::Delta delta) {
delta = D::fromFloat([-1 .. 1]) and result = delta
or
upper = true and result = D::fromFloat(-1) and D::toFloat(delta) < -1
or
upper = false and result = D::fromFloat(1) and D::toFloat(delta) > 1
}
/**
* Holds if `b + delta` is a valid bound for `inp` when used as an input to
* `phi` along `edge`.
* - `upper = true` : `inp <= b + delta`
* - `upper = false` : `inp >= b + delta`
*/
private predicate boundedPhiInp(
Sem::SsaPhiNode phi, Sem::SsaVariable inp, SsaReadPositionPhiInputEdge edge, SemBound b,
D::Delta delta, boolean upper, boolean fromBackEdge, D::Delta origdelta, SemReason reason
) {
edge.phiInput(phi, inp) and
exists(D::Delta d, boolean fromBackEdge0 |
boundedSsa(inp, b, d, edge, upper, fromBackEdge0, origdelta, reason)
or
boundedPhi(inp, b, d, upper, fromBackEdge0, origdelta, reason)
or
b.(SemSsaBound).getVariable() = inp and
d = D::fromFloat(0) and
(upper = true or upper = false) and
fromBackEdge0 = false and
origdelta = D::fromFloat(0) and
reason = TSemNoReason()
|
if backEdge(phi, inp, edge)
then
fromBackEdge = true and
(
fromBackEdge0 = true and
delta =
D::fromFloat(D::toFloat(weakenDelta(upper,
D::fromFloat(D::toFloat(d) - D::toFloat(origdelta)))) + D::toFloat(origdelta))
or
fromBackEdge0 = false and delta = d
)
else (
delta = d and fromBackEdge = fromBackEdge0
)
)
}
/**
* Holds if `b + delta` is a valid bound for `inp` when used as an input to
* `phi` along `edge`.
* - `upper = true` : `inp <= b + delta`
* - `upper = false` : `inp >= b + delta`
*
* Equivalent to `boundedPhiInp(phi, inp, edge, b, delta, upper, _, _, _)`.
*/
pragma[noinline]
private predicate boundedPhiInp1(
Sem::SsaPhiNode phi, SemBound b, boolean upper, Sem::SsaVariable inp,
SsaReadPositionPhiInputEdge edge, D::Delta delta
) {
boundedPhiInp(phi, inp, edge, b, delta, upper, _, _, _)
}
/**
* Holds if `phi` is a valid bound for `inp` when used as an input to `phi`
* along `edge`.
* - `upper = true` : `inp <= phi`
* - `upper = false` : `inp >= phi`
*/
private predicate selfBoundedPhiInp(
Sem::SsaPhiNode phi, Sem::SsaVariable inp, SsaReadPositionPhiInputEdge edge, boolean upper
) {
exists(D::Delta d, SemSsaBound phibound |
phibound.getVariable() = phi and
boundedPhiInp(phi, inp, edge, phibound, d, upper, _, _, _) and
(
upper = true and D::toFloat(d) <= 0
or
upper = false and D::toFloat(d) >= 0
)
)
}
/**
* Holds if `b + delta` is a valid bound for some input, `inp`, to `phi`, and
* thus a candidate bound for `phi`.
* - `upper = true` : `inp <= b + delta`
* - `upper = false` : `inp >= b + delta`
*/
pragma[noinline]
private predicate boundedPhiCand(
Sem::SsaPhiNode phi, boolean upper, SemBound b, D::Delta delta, boolean fromBackEdge,
D::Delta origdelta, SemReason reason
) {
boundedPhiInp(phi, _, _, b, delta, upper, fromBackEdge, origdelta, reason)
}
/**
* Holds if the candidate bound `b + delta` for `phi` is valid for the phi input
* `inp` along `edge`.
*/
private predicate boundedPhiCandValidForEdge(
Sem::SsaPhiNode phi, SemBound b, D::Delta delta, boolean upper, boolean fromBackEdge,
D::Delta origdelta, SemReason reason, Sem::SsaVariable inp, SsaReadPositionPhiInputEdge edge
) {
boundedPhiCand(phi, upper, b, delta, fromBackEdge, origdelta, reason) and
(
exists(D::Delta d | boundedPhiInp1(phi, b, upper, inp, edge, d) |
upper = true and D::toFloat(d) <= D::toFloat(delta)
)
or
exists(D::Delta d | boundedPhiInp1(phi, b, upper, inp, edge, d) |
upper = false and D::toFloat(d) >= D::toFloat(delta)
)
or
selfBoundedPhiInp(phi, inp, edge, upper)
)
}
/**
* Holds if `b + delta` is a valid bound for `phi`'s `rix`th input edge.
* - `upper = true` : `phi <= b + delta`
* - `upper = false` : `phi >= b + delta`
*/
pragma[nomagic]
private predicate boundedPhiRankStep(
Sem::SsaPhiNode phi, SemBound b, D::Delta delta, boolean upper, boolean fromBackEdge,
D::Delta origdelta, SemReason reason, int rix
) {
exists(Sem::SsaVariable inp, SsaReadPositionPhiInputEdge edge |
rankedPhiInput(phi, inp, edge, rix) and
boundedPhiCandValidForEdge(phi, b, delta, upper, fromBackEdge, origdelta, reason, inp, edge)
|
rix = 1
or
boundedPhiRankStep(phi, b, delta, upper, fromBackEdge, origdelta, reason, rix - 1)
)
}
/**
* Holds if `b + delta` is a valid bound for `phi`.
* - `upper = true` : `phi <= b + delta`
* - `upper = false` : `phi >= b + delta`
*/
private predicate boundedPhi(
Sem::SsaPhiNode phi, SemBound b, D::Delta delta, boolean upper, boolean fromBackEdge,
D::Delta origdelta, SemReason reason
) {
exists(int r |
maxPhiInputRank(phi, r) and
boundedPhiRankStep(phi, b, delta, upper, fromBackEdge, origdelta, reason, r)
)
}
/**
* Holds if `e` has an upper (for `upper = true`) or lower
* (for `upper = false`) bound of `b`.
*/
private predicate baseBound(Sem::Expr e, D::Delta b, boolean upper) {
hasConstantBound(e, b, upper)
or
upper = false and
b = D::fromInt(0) and
semPositive(e.(Sem::BitAndExpr).getAnOperand())
}
/**
* Holds if the value being cast has an upper (for `upper = true`) or lower
* (for `upper = false`) bound within the bounds of the resulting type.
* For `upper = true` this means that the cast will not overflow and for
* `upper = false` this means that the cast will not underflow.
*/
private predicate safeNarrowingCast(NarrowingCastExpr cast, boolean upper) {
exists(D::Delta bound |
bounded(cast.getOperand(), any(SemZeroBound zb), bound, upper, _, _, _)
|
upper = true and D::toFloat(bound) <= cast.getUpperBound()
or
upper = false and D::toFloat(bound) >= cast.getLowerBound()
)
}
pragma[noinline]
private predicate boundedCastExpr(
NarrowingCastExpr cast, SemBound b, D::Delta delta, boolean upper, boolean fromBackEdge,
D::Delta origdelta, SemReason reason
) {
bounded(cast.getOperand(), b, delta, upper, fromBackEdge, origdelta, reason)
}
pragma[nomagic]
private predicate initialBoundedUpper(Sem::Expr e) {
exists(D::Delta d |
initialBounded(e, _, d, false, _, _, _) and
D::toFloat(d) >= 0
)
}
private predicate noOverflow0(Sem::Expr e, boolean upper) {
exists(boolean lower | lower = upper.booleanNot() |
semExprDoesNotOverflow(lower, e)
or
upper = [true, false] and
not potentiallyOverflowingExpr(lower, e)
)
}
pragma[nomagic]
private predicate initialBoundedLower(Sem::Expr e) {
exists(D::Delta d |
initialBounded(e, _, d, true, _, _, _) and
D::toFloat(d) <= 0
)
}
pragma[nomagic]
private predicate noOverflow(Sem::Expr e, boolean upper) {
noOverflow0(e, upper)
or
upper = true and initialBoundedUpper(e)
or
upper = false and initialBoundedLower(e)
}
predicate bounded(
Sem::Expr e, SemBound b, D::Delta delta, boolean upper, boolean fromBackEdge,
D::Delta origdelta, SemReason reason
) {
initialBounded(e, b, delta, upper, fromBackEdge, origdelta, reason) and
noOverflow(e, upper)
}
predicate potentiallyOverflowingExpr(boolean positively, Sem::Expr expr) {
positively = true and
semMayBePositive(expr.(Sem::AddExpr).getLeftOperand()) and
semMayBePositive(expr.(Sem::AddExpr).getRightOperand())
or
positively = false and
semMayBeNegative(expr.(Sem::AddExpr).getLeftOperand()) and
semMayBeNegative(expr.(Sem::AddExpr).getRightOperand())
or
positively = true and
semMayBePositive(expr.(Sem::SubExpr).getLeftOperand()) and
semMayBeNegative(expr.(Sem::SubExpr).getRightOperand())
or
positively = false and
semMayBeNegative(expr.(Sem::SubExpr).getLeftOperand()) and
semMayBePositive(expr.(Sem::SubExpr).getRightOperand())
or
positively in [true, false] and
(
expr instanceof Sem::MulExpr or
expr instanceof Sem::ShiftLeftExpr
)
or
positively = false and
(
expr instanceof Sem::NegateExpr or
expr instanceof Sem::PreDecExpr or
Sem::getExprType(expr.(Sem::DivExpr)) instanceof Sem::FloatingPointType
)
or
positively = true and
expr instanceof Sem::PreIncExpr
}
/**
* Computes a normal form of `x` where -0.0 has changed to +0.0. This can be
* needed on the lesser side of a floating-point comparison or on both sides of
* a floating point equality because QL does not follow IEEE in floating-point
* comparisons but instead defines -0.0 to be less than and distinct from 0.0.
*/
bindingset[x]
private float normalizeFloatUp(float x) { result = x + 0.0 }
bindingset[x, y]
private float truncatingDiv(float x, float y) { result = (x - (x % y)) / y }
/**
* Holds if `b + delta` is a valid bound for `e`.
* - `upper = true` : `e <= b + delta`
* - `upper = false` : `e >= b + delta`
*/
predicate initialBounded(
Sem::Expr e, SemBound b, D::Delta delta, boolean upper, boolean fromBackEdge,
D::Delta origdelta, SemReason reason
) {
not ignoreExprBound(e) and
(
e = b.getExpr(delta) and
(upper = true or upper = false) and
fromBackEdge = false and
origdelta = delta and
reason = TSemNoReason()
or
baseBound(e, delta, upper) and
b instanceof SemZeroBound and
fromBackEdge = false and
origdelta = delta and
reason = TSemNoReason()
or
exists(Sem::SsaVariable v, SsaReadPositionBlock bb |
boundedSsa(v, b, delta, bb, upper, fromBackEdge, origdelta, reason) and
bb.getAnSsaRead(v) = e
)
or
exists(Sem::Expr mid, D::Delta d1, D::Delta d2 |
boundFlowStep(e, mid, d1, upper) and
// Constants have easy, base-case bounds, so let's not infer any recursive bounds.
not e instanceof Sem::ConstantIntegerExpr and
bounded(mid, b, d2, upper, fromBackEdge, origdelta, reason) and
// upper = true: e <= mid + d1 <= b + d1 + d2 = b + delta
// upper = false: e >= mid + d1 >= b + d1 + d2 = b + delta
delta = D::fromFloat(D::toFloat(d1) + D::toFloat(d2))
)
or
exists(Sem::SsaPhiNode phi |
boundedPhi(phi, b, delta, upper, fromBackEdge, origdelta, reason) and
e = phi.getAUse()
)
or
exists(Sem::Expr mid, D::Delta factor, D::Delta d |
boundFlowStepMul(e, mid, factor) and
not e instanceof Sem::ConstantIntegerExpr and
bounded(mid, b, d, upper, fromBackEdge, origdelta, reason) and
b instanceof SemZeroBound and
delta = D::fromFloat(D::toFloat(d) * D::toFloat(factor))
)
or
exists(Sem::Expr mid, D::Delta factor, D::Delta d |
boundFlowStepDiv(e, mid, factor) and
not e instanceof Sem::ConstantIntegerExpr and
bounded(mid, b, d, upper, fromBackEdge, origdelta, reason) and
b instanceof SemZeroBound and
D::toFloat(d) >= 0 and
delta = D::fromFloat(truncatingDiv(D::toFloat(d), D::toFloat(factor)))
)
or
exists(NarrowingCastExpr cast |
cast = e and
safeNarrowingCast(cast, upper.booleanNot()) and
boundedCastExpr(cast, b, delta, upper, fromBackEdge, origdelta, reason)
)
or
exists(
Sem::ConditionalExpr cond, D::Delta d1, D::Delta d2, boolean fbe1, boolean fbe2,
D::Delta od1, D::Delta od2, SemReason r1, SemReason r2
|
cond = e and
boundedConditionalExpr(cond, b, upper, true, d1, fbe1, od1, r1) and
boundedConditionalExpr(cond, b, upper, false, d2, fbe2, od2, r2) and
(
delta = d1 and fromBackEdge = fbe1 and origdelta = od1 and reason = r1
or
delta = d2 and fromBackEdge = fbe2 and origdelta = od2 and reason = r2
)
|
upper = true and delta = D::fromFloat(D::toFloat(d1).maximum(D::toFloat(d2)))
or
upper = false and delta = D::fromFloat(D::toFloat(d1).minimum(D::toFloat(d2)))
)
or
not javaCompatibility() and
exists(Sem::Expr mid, D::Delta d, float f |
e.(Sem::NegateExpr).getOperand() = mid and
b instanceof SemZeroBound and
bounded(mid, b, d, upper.booleanNot(), fromBackEdge, origdelta, reason) and
f = normalizeFloatUp(-D::toFloat(d)) and
delta = D::fromFloat(f) and
if semPositive(e) then f >= 0 else any()
)
or
exists(
SemBound bLeft, SemBound bRight, D::Delta dLeft, D::Delta dRight, boolean fbeLeft,
boolean fbeRight, D::Delta odLeft, D::Delta odRight, SemReason rLeft, SemReason rRight
|
boundedAddOperand(e, upper, bLeft, false, dLeft, fbeLeft, odLeft, rLeft) and
boundedAddOperand(e, upper, bRight, true, dRight, fbeRight, odRight, rRight) and
delta = D::fromFloat(D::toFloat(dLeft) + D::toFloat(dRight)) and
fromBackEdge = fbeLeft.booleanOr(fbeRight)
|
b = bLeft and origdelta = odLeft and reason = rLeft and bRight instanceof SemZeroBound
or
b = bRight and origdelta = odRight and reason = rRight and bLeft instanceof SemZeroBound
)
or
not javaCompatibility() and
exists(D::Delta dLeft, D::Delta dRight, boolean fbeLeft, boolean fbeRight |
boundedSubOperandLeft(e, upper, b, dLeft, fbeLeft, origdelta, reason) and
boundedSubOperandRight(e, upper, dRight, fbeRight) and
// when `upper` is `true` we have:
// left <= b + dLeft
// right >= 0 + dRight
// left - right <= b + dLeft - (0 + dRight)
// = b + (dLeft - dRight)
// and when `upper` is `false` we have:
// left >= b + dLeft
// right <= 0 + dRight
// left - right >= b + dLeft - (0 + dRight)
// = b + (dLeft - dRight)
delta = D::fromFloat(D::toFloat(dLeft) - D::toFloat(dRight)) and
fromBackEdge = fbeLeft.booleanOr(fbeRight)
)
or
not javaCompatibility() and
exists(
Sem::RemExpr rem, D::Delta d_max, D::Delta d1, D::Delta d2, boolean fbe1, boolean fbe2,
D::Delta od1, D::Delta od2, SemReason r1, SemReason r2
|
rem = e and
b instanceof SemZeroBound and
not (upper = true and semPositive(rem.getRightOperand())) and
not (upper = true and semPositive(rem.getLeftOperand())) and
boundedRemExpr(rem, true, d1, fbe1, od1, r1) and
boundedRemExpr(rem, false, d2, fbe2, od2, r2) and
(
if D::toFloat(d1).abs() > D::toFloat(d2).abs()
then (
d_max = d1 and fromBackEdge = fbe1 and origdelta = od1 and reason = r1
) else (
d_max = d2 and fromBackEdge = fbe2 and origdelta = od2 and reason = r2
)
)
|
upper = true and delta = D::fromFloat(D::toFloat(d_max).abs() - 1)
or
upper = false and delta = D::fromFloat(-D::toFloat(d_max).abs() + 1)
)
or
not javaCompatibility() and
exists(
D::Delta dLeft, D::Delta dRight, boolean fbeLeft, boolean fbeRight, D::Delta odLeft,
D::Delta odRight, SemReason rLeft, SemReason rRight
|
boundedMulOperand(e, upper, true, dLeft, fbeLeft, odLeft, rLeft) and
boundedMulOperand(e, upper, false, dRight, fbeRight, odRight, rRight) and
delta = D::fromFloat(D::toFloat(dLeft) * D::toFloat(dRight)) and
fromBackEdge = fbeLeft.booleanOr(fbeRight)
|
b instanceof SemZeroBound and origdelta = odLeft and reason = rLeft
or
b instanceof SemZeroBound and origdelta = odRight and reason = rRight
)
)
}
pragma[nomagic]
private predicate boundedConditionalExpr(
Sem::ConditionalExpr cond, SemBound b, boolean upper, boolean branch, D::Delta delta,
boolean fromBackEdge, D::Delta origdelta, SemReason reason
) {
bounded(cond.getBranchExpr(branch), b, delta, upper, fromBackEdge, origdelta, reason)
}
pragma[nomagic]
private predicate boundedAddOperand(
Sem::AddExpr add, boolean upper, SemBound b, boolean isLeft, D::Delta delta,
boolean fromBackEdge, D::Delta origdelta, SemReason reason
) {
// `valueFlowStep` already handles the case where one of the operands is a constant.
not valueFlowStep(add, _, _) and
(
isLeft = true and
bounded(add.getLeftOperand(), b, delta, upper, fromBackEdge, origdelta, reason)
or
isLeft = false and
bounded(add.getRightOperand(), b, delta, upper, fromBackEdge, origdelta, reason)
)
}
/**
* Holds if `sub = left - right` and `left <= b + delta` if `upper` is `true`
* and `left >= b + delta` is `upper` is `false`.
*/
pragma[nomagic]
private predicate boundedSubOperandLeft(
Sem::SubExpr sub, boolean upper, SemBound b, D::Delta delta, boolean fromBackEdge,
D::Delta origdelta, SemReason reason
) {
// `valueFlowStep` already handles the case where one of the operands is a constant.
not valueFlowStep(sub, _, _) and
bounded(sub.getLeftOperand(), b, delta, upper, fromBackEdge, origdelta, reason)
}
/**
* Holds if `sub = left - right` and `right <= 0 + delta` if `upper` is `false`
* and `right >= 0 + delta` is `upper` is `true`.
*
* Note that the boolean value of `upper` is flipped compared to many other predicates in
* this file. This ensures a clean join at the call-site.
*/
pragma[nomagic]
private predicate boundedSubOperandRight(
Sem::SubExpr sub, boolean upper, D::Delta delta, boolean fromBackEdge
) {
// `valueFlowStep` already handles the case where one of the operands is a constant.
not valueFlowStep(sub, _, _) and
bounded(sub.getRightOperand(), any(SemZeroBound zb), delta, upper.booleanNot(), fromBackEdge, _,
_)
}
pragma[nomagic]
private predicate boundedRemExpr(
Sem::RemExpr rem, boolean upper, D::Delta delta, boolean fromBackEdge, D::Delta origdelta,
SemReason reason
) {
bounded(rem.getRightOperand(), any(SemZeroBound zb), delta, upper, fromBackEdge, origdelta,
reason)
}
/**
* Define `cmp(true) = <=` and `cmp(false) = >=`.
*
* Holds if `mul = left * right`, and in order to know if `mul cmp(upper) 0 + k` (for
* some `k`) we need to know that `left cmp(upperLeft) 0 + k1` and
* `right cmp(upperRight) 0 + k2` (for some `k1` and `k2`).
*/
pragma[nomagic]
private predicate boundedMulOperandCand(
Sem::MulExpr mul, Sem::Expr left, Sem::Expr right, boolean upper, boolean upperLeft,
boolean upperRight
) {
not boundFlowStepMul(mul, _, _) and
mul.getLeftOperand() = left and
mul.getRightOperand() = right and
(
semPositive(left) and
(
// left, right >= 0
semPositive(right) and
(
// max(left * right) = max(left) * max(right)
upper = true and
upperLeft = true and
upperRight = true
or
// min(left * right) = min(left) * min(right)
upper = false and
upperLeft = false and
upperRight = false
)
or
// left >= 0, right <= 0
semNegative(right) and
(
// max(left * right) = min(left) * max(right)
upper = true and
upperLeft = false and
upperRight = true
or
// min(left * right) = max(left) * min(right)
upper = false and
upperLeft = true and
upperRight = false
)
)
or
semNegative(left) and
(
// left <= 0, right >= 0
semPositive(right) and
(
// max(left * right) = max(left) * min(right)
upper = true and
upperLeft = true and
upperRight = false
or
// min(left * right) = min(left) * max(right)
upper = false and
upperLeft = false and
upperRight = true
)
or
// left, right <= 0
semNegative(right) and
(
// max(left * right) = min(left) * min(right)
upper = true and
upperLeft = false and
upperRight = false
or
// min(left * right) = max(left) * max(right)
upper = false and
upperLeft = true and
upperRight = true
)
)
)
}
/**
* Holds if `isLeft = true` and `mul`'s left operand is bounded by `delta`,
* or if `isLeft = false` and `mul`'s right operand is bounded by `delta`.
*
* If `upper = true` the computed bound contributes to an upper bound of `mul`,
* and if `upper = false` it contributes to a lower bound.
* The `fromBackEdge`, `origdelta`, `reason` triple are defined by the recursive
* call to `bounded`.
*/
pragma[nomagic]
private predicate boundedMulOperand(
Sem::MulExpr mul, boolean upper, boolean isLeft, D::Delta delta, boolean fromBackEdge,
D::Delta origdelta, SemReason reason
) {
exists(boolean upperLeft, boolean upperRight, Sem::Expr left, Sem::Expr right |
boundedMulOperandCand(mul, left, right, upper, upperLeft, upperRight)
|
isLeft = true and
bounded(left, any(SemZeroBound zb), delta, upperLeft, fromBackEdge, origdelta, reason)
or
isLeft = false and
bounded(right, any(SemZeroBound zb), delta, upperRight, fromBackEdge, origdelta, reason)
)
}
}