Files
codeql/cpp/ql/lib/semmle/code/cpp/controlflow/IRGuards.qll
2024-11-21 15:39:00 +01:00

1357 lines
48 KiB
Plaintext

/**
* Provides classes and predicates for reasoning about guards and the control
* flow elements controlled by those guards.
*/
import cpp
import semmle.code.cpp.ir.IR
private import semmle.code.cpp.ir.implementation.raw.internal.TranslatedExpr
private import semmle.code.cpp.ir.implementation.raw.internal.InstructionTag
/**
* Holds if `block` consists of an `UnreachedInstruction`.
*
* We avoiding reporting an unreached block as being controlled by a guard. The unreached block
* has the AST for the `Function` itself, which tends to confuse mapping between the AST `BasicBlock`
* and the `IRBlock`.
*/
pragma[noinline]
private predicate isUnreachedBlock(IRBlock block) {
block.getFirstInstruction() instanceof UnreachedInstruction
}
private newtype TAbstractValue =
TBooleanValue(boolean b) { b = true or b = false } or
TMatchValue(CaseEdge c)
/**
* An abstract value. This is either a boolean value, or a `switch` case.
*/
abstract class AbstractValue extends TAbstractValue {
/** Gets an abstract value that represents the dual of this value, if any. */
abstract AbstractValue getDualValue();
/** Gets a textual representation of this abstract value. */
abstract string toString();
}
/** A Boolean value. */
class BooleanValue extends AbstractValue, TBooleanValue {
/** Gets the underlying Boolean value. */
boolean getValue() { this = TBooleanValue(result) }
override BooleanValue getDualValue() { result.getValue() = this.getValue().booleanNot() }
override string toString() { result = this.getValue().toString() }
}
/** A value that represents a match against a specific `switch` case. */
class MatchValue extends AbstractValue, TMatchValue {
/** Gets the case. */
CaseEdge getCase() { this = TMatchValue(result) }
override MatchValue getDualValue() {
// A `MatchValue` has no dual.
none()
}
override string toString() { result = this.getCase().toString() }
}
/**
* A Boolean condition in the AST that guards one or more basic blocks.
*/
cached
class GuardCondition extends Expr {
cached
GuardCondition() {
exists(IRGuardCondition ir | this = ir.getUnconvertedResultExpression())
or
// no binary operators in the IR
this.(BinaryLogicalOperation).getAnOperand() instanceof GuardCondition
}
/**
* Holds if this condition controls `controlled`, meaning that `controlled` is only
* entered if the value of this condition is `v`.
*
* For details on what "controls" mean, see the QLDoc for `controls`.
*/
cached
predicate valueControls(BasicBlock controlled, AbstractValue v) { none() }
/**
* Holds if this condition controls `controlled`, meaning that `controlled` is only
* entered if the value of this condition is `testIsTrue`.
*
* Illustration:
*
* ```
* [ (testIsTrue) ]
* [ this ----------------succ ---- controlled ]
* [ | | ]
* [ (testIsFalse) | ------ ... ]
* [ other ]
* ```
*
* The predicate holds if all paths to `controlled` go via the `testIsTrue`
* edge of the control-flow graph. In other words, the `testIsTrue` edge
* must dominate `controlled`. This means that `controlled` must be
* dominated by both `this` and `succ` (the target of the `testIsTrue`
* edge). It also means that any other edge into `succ` must be a back-edge
* from a node which is dominated by `succ`.
*
* The short-circuit boolean operations have slightly surprising behavior
* here: because the operation itself only dominates one branch (due to
* being short-circuited) then it will only control blocks dominated by the
* true (for `&&`) or false (for `||`) branch.
*/
cached
final predicate controls(BasicBlock controlled, boolean testIsTrue) {
this.valueControls(controlled, any(BooleanValue bv | bv.getValue() = testIsTrue))
}
/** Holds if (determined by this guard) `left < right + k` evaluates to `isLessThan` if this expression evaluates to `testIsTrue`. */
cached
predicate comparesLt(Expr left, Expr right, int k, boolean isLessThan, boolean testIsTrue) {
none()
}
/**
* Holds if (determined by this guard) `left < right + k` must be `isLessThan` in `block`.
* If `isLessThan = false` then this implies `left >= right + k`.
*/
cached
predicate ensuresLt(Expr left, Expr right, int k, BasicBlock block, boolean isLessThan) { none() }
/**
* Holds if (determined by this guard) `e < k` evaluates to `isLessThan` if
* this expression evaluates to `value`.
*/
cached
predicate comparesLt(Expr e, int k, boolean isLessThan, AbstractValue value) { none() }
/**
* Holds if (determined by this guard) `e < k` must be `isLessThan` in `block`.
* If `isLessThan = false` then this implies `e >= k`.
*/
cached
predicate ensuresLt(Expr e, int k, BasicBlock block, boolean isLessThan) { none() }
/** Holds if (determined by this guard) `left == right + k` evaluates to `areEqual` if this expression evaluates to `testIsTrue`. */
cached
predicate comparesEq(Expr left, Expr right, int k, boolean areEqual, boolean testIsTrue) {
none()
}
/**
* Holds if (determined by this guard) `left == right + k` must be `areEqual` in `block`.
* If `areEqual = false` then this implies `left != right + k`.
*/
cached
predicate ensuresEq(Expr left, Expr right, int k, BasicBlock block, boolean areEqual) { none() }
/** Holds if (determined by this guard) `e == k` evaluates to `areEqual` if this expression evaluates to `value`. */
cached
predicate comparesEq(Expr e, int k, boolean areEqual, AbstractValue value) { none() }
/**
* Holds if (determined by this guard) `e == k` must be `areEqual` in `block`.
* If `areEqual = false` then this implies `e != k`.
*/
cached
predicate ensuresEq(Expr e, int k, BasicBlock block, boolean areEqual) { none() }
}
/**
* A binary logical operator in the AST that guards one or more basic blocks.
*/
private class GuardConditionFromBinaryLogicalOperator extends GuardCondition {
GuardConditionFromBinaryLogicalOperator() {
this.(BinaryLogicalOperation).getAnOperand() instanceof GuardCondition
}
override predicate valueControls(BasicBlock controlled, AbstractValue v) {
exists(BinaryLogicalOperation binop, GuardCondition lhs, GuardCondition rhs |
this = binop and
lhs = binop.getLeftOperand() and
rhs = binop.getRightOperand() and
lhs.valueControls(controlled, v) and
rhs.valueControls(controlled, v)
)
}
override predicate comparesLt(Expr left, Expr right, int k, boolean isLessThan, boolean testIsTrue) {
exists(boolean partIsTrue, GuardCondition part |
this.(BinaryLogicalOperation).impliesValue(part, partIsTrue, testIsTrue)
|
part.comparesLt(left, right, k, isLessThan, partIsTrue)
)
}
override predicate comparesLt(Expr e, int k, boolean isLessThan, AbstractValue value) {
exists(BooleanValue partValue, GuardCondition part |
this.(BinaryLogicalOperation)
.impliesValue(part, partValue.getValue(), value.(BooleanValue).getValue())
|
part.comparesLt(e, k, isLessThan, partValue)
)
}
override predicate ensuresLt(Expr left, Expr right, int k, BasicBlock block, boolean isLessThan) {
exists(boolean testIsTrue |
this.comparesLt(left, right, k, isLessThan, testIsTrue) and this.controls(block, testIsTrue)
)
}
override predicate ensuresLt(Expr e, int k, BasicBlock block, boolean isLessThan) {
exists(AbstractValue value |
this.comparesLt(e, k, isLessThan, value) and this.valueControls(block, value)
)
}
override predicate comparesEq(Expr left, Expr right, int k, boolean areEqual, boolean testIsTrue) {
exists(boolean partIsTrue, GuardCondition part |
this.(BinaryLogicalOperation).impliesValue(part, partIsTrue, testIsTrue)
|
part.comparesEq(left, right, k, areEqual, partIsTrue)
)
}
override predicate ensuresEq(Expr left, Expr right, int k, BasicBlock block, boolean areEqual) {
exists(boolean testIsTrue |
this.comparesEq(left, right, k, areEqual, testIsTrue) and this.controls(block, testIsTrue)
)
}
override predicate comparesEq(Expr e, int k, boolean areEqual, AbstractValue value) {
exists(BooleanValue partValue, GuardCondition part |
this.(BinaryLogicalOperation)
.impliesValue(part, partValue.getValue(), value.(BooleanValue).getValue())
|
part.comparesEq(e, k, areEqual, partValue)
)
}
override predicate ensuresEq(Expr e, int k, BasicBlock block, boolean areEqual) {
exists(AbstractValue value |
this.comparesEq(e, k, areEqual, value) and this.valueControls(block, value)
)
}
}
/**
* A Boolean condition in the AST that guards one or more basic blocks and has a corresponding IR
* instruction.
*/
private class GuardConditionFromIR extends GuardCondition {
IRGuardCondition ir;
GuardConditionFromIR() { this = ir.getUnconvertedResultExpression() }
override predicate valueControls(BasicBlock controlled, AbstractValue v) {
// This condition must determine the flow of control; that is, this
// node must be a top-level condition.
this.controlsBlock(controlled, v)
}
override predicate comparesLt(Expr left, Expr right, int k, boolean isLessThan, boolean testIsTrue) {
exists(Instruction li, Instruction ri |
li.getUnconvertedResultExpression() = left and
ri.getUnconvertedResultExpression() = right and
ir.comparesLt(li.getAUse(), ri.getAUse(), k, isLessThan, testIsTrue)
)
}
override predicate comparesLt(Expr e, int k, boolean isLessThan, AbstractValue value) {
exists(Instruction i |
i.getUnconvertedResultExpression() = e and
ir.comparesLt(i.getAUse(), k, isLessThan, value)
)
}
override predicate ensuresLt(Expr left, Expr right, int k, BasicBlock block, boolean isLessThan) {
exists(Instruction li, Instruction ri, boolean testIsTrue |
li.getUnconvertedResultExpression() = left and
ri.getUnconvertedResultExpression() = right and
ir.comparesLt(li.getAUse(), ri.getAUse(), k, isLessThan, testIsTrue) and
this.controls(block, testIsTrue)
)
}
override predicate ensuresLt(Expr e, int k, BasicBlock block, boolean isLessThan) {
exists(Instruction i, AbstractValue value |
i.getUnconvertedResultExpression() = e and
ir.comparesLt(i.getAUse(), k, isLessThan, value) and
this.valueControls(block, value)
)
}
override predicate comparesEq(Expr left, Expr right, int k, boolean areEqual, boolean testIsTrue) {
exists(Instruction li, Instruction ri |
li.getUnconvertedResultExpression() = left and
ri.getUnconvertedResultExpression() = right and
ir.comparesEq(li.getAUse(), ri.getAUse(), k, areEqual, testIsTrue)
)
}
override predicate ensuresEq(Expr left, Expr right, int k, BasicBlock block, boolean areEqual) {
exists(Instruction li, Instruction ri, boolean testIsTrue |
li.getUnconvertedResultExpression() = left and
ri.getUnconvertedResultExpression() = right and
ir.comparesEq(li.getAUse(), ri.getAUse(), k, areEqual, testIsTrue) and
this.controls(block, testIsTrue)
)
}
override predicate comparesEq(Expr e, int k, boolean areEqual, AbstractValue value) {
exists(Instruction i |
i.getUnconvertedResultExpression() = e and
ir.comparesEq(i.getAUse(), k, areEqual, value)
)
}
override predicate ensuresEq(Expr e, int k, BasicBlock block, boolean areEqual) {
exists(Instruction i, AbstractValue value |
i.getUnconvertedResultExpression() = e and
ir.comparesEq(i.getAUse(), k, areEqual, value) and
this.valueControls(block, value)
)
}
/**
* Holds if this condition controls `block`, meaning that `block` is only
* entered if the value of this condition is `v`. This helper
* predicate does not necessarily hold for binary logical operations like
* `&&` and `||`. See the detailed explanation on predicate `controls`.
*/
private predicate controlsBlock(BasicBlock controlled, AbstractValue v) {
exists(IRBlock irb |
ir.valueControls(irb, v) and
nonExcludedIRAndBasicBlock(irb, controlled) and
not isUnreachedBlock(irb)
)
}
}
private predicate excludeAsControlledInstruction(Instruction instr) {
// Exclude the temporaries generated by a ternary expression.
exists(TranslatedConditionalExpr tce |
instr = tce.getInstruction(ConditionValueFalseStoreTag())
or
instr = tce.getInstruction(ConditionValueTrueStoreTag())
or
instr = tce.getInstruction(ConditionValueTrueTempAddressTag())
or
instr = tce.getInstruction(ConditionValueFalseTempAddressTag())
)
or
// Exclude unreached instructions, as their AST is the whole function and not a block.
instr instanceof UnreachedInstruction
}
/**
* Holds if `irb` is the `IRBlock` corresponding to the AST basic block
* `controlled`, and `irb` does not contain any instruction(s) that should make
* the `irb` be ignored.
*/
pragma[nomagic]
private predicate nonExcludedIRAndBasicBlock(IRBlock irb, BasicBlock controlled) {
exists(Instruction instr |
instr = irb.getAnInstruction() and
instr.getAst().(ControlFlowNode).getBasicBlock() = controlled and
not excludeAsControlledInstruction(instr)
)
}
/**
* A Boolean condition in the IR that guards one or more basic blocks.
*
* Note that `&&` and `||` don't have an explicit representation in the IR,
* and therefore will not appear as IRGuardConditions.
*/
cached
class IRGuardCondition extends Instruction {
Instruction branch;
/*
* An `IRGuardCondition` supports reasoning about four different kinds of
* relations:
* 1. A unary equality relation of the form `e == k`
* 2. A binary equality relation of the form `e1 == e2 + k`
* 3. A unary inequality relation of the form `e < k`
* 4. A binary inequality relation of the form `e1 < e2 + k`
*
* where `k` is a constant.
*
* Furthermore, the unary relations (i.e., case 1 and case 3) are also
* inferred from `switch` statement guards: equality relations are inferred
* from the unique `case` statement, if any, and inequality relations are
* inferred from the [case range](https://gcc.gnu.org/onlinedocs/gcc/Case-Ranges.html)
* gcc extension.
*
* The implementation of all four follows the same structure: Each relation
* has a cached user-facing predicate that. For example,
* `GuardCondition::comparesEq` calls `compares_eq`. This predicate has
* several cases that recursively decompose the relation to bring it to a
* canonical form (i.e., a relation of the form `e1 == e2 + k`). The base
* case for this relation (i.e., `simple_comparison_eq`) handles
* `CompareEQInstruction`s and `CompareNEInstruction`, and recursive
* predicates (e.g., `complex_eq`) rewrites larger expressions such as
* `e1 + k1 == e2 + k2` into canonical the form `e1 == e2 + (k2 - k1)`.
*/
cached
IRGuardCondition() { branch = getBranchForCondition(this) }
/**
* Holds if this condition controls `controlled`, meaning that `controlled` is only
* entered if the value of this condition is `v`.
*
* For details on what "controls" mean, see the QLDoc for `controls`.
*/
cached
predicate valueControls(IRBlock controlled, AbstractValue v) {
// This condition must determine the flow of control; that is, this
// node must be a top-level condition.
this.controlsBlock(controlled, v)
or
exists(IRGuardCondition ne |
this = ne.(LogicalNotInstruction).getUnary() and
ne.valueControls(controlled, v.getDualValue())
)
}
/**
* Holds if this condition controls `controlled`, meaning that `controlled` is only
* entered if the value of this condition is `testIsTrue`.
*
* Illustration:
*
* ```
* [ (testIsTrue) ]
* [ this ----------------succ ---- controlled ]
* [ | | ]
* [ (testIsFalse) | ------ ... ]
* [ other ]
* ```
*
* The predicate holds if all paths to `controlled` go via the `testIsTrue`
* edge of the control-flow graph. In other words, the `testIsTrue` edge
* must dominate `controlled`. This means that `controlled` must be
* dominated by both `this` and `succ` (the target of the `testIsTrue`
* edge). It also means that any other edge into `succ` must be a back-edge
* from a node which is dominated by `succ`.
*
* The short-circuit boolean operations have slightly surprising behavior
* here: because the operation itself only dominates one branch (due to
* being short-circuited) then it will only control blocks dominated by the
* true (for `&&`) or false (for `||`) branch.
*/
cached
predicate controls(IRBlock controlled, boolean testIsTrue) {
this.valueControls(controlled, any(BooleanValue bv | bv.getValue() = testIsTrue))
}
/**
* Holds if the control-flow edge `(pred, succ)` may be taken only if
* the value of this condition is `v`.
*/
cached
predicate valueControlsEdge(IRBlock pred, IRBlock succ, AbstractValue v) {
pred.getASuccessor() = succ and
this.valueControls(pred, v)
or
succ = this.getBranchSuccessor(v) and
(
branch.(ConditionalBranchInstruction).getCondition() = this and
branch.getBlock() = pred
or
branch.(SwitchInstruction).getExpression() = this and
branch.getBlock() = pred
)
}
/**
* Holds if the control-flow edge `(pred, succ)` may be taken only if
* the value of this condition is `testIsTrue`.
*/
cached
final predicate controlsEdge(IRBlock pred, IRBlock succ, boolean testIsTrue) {
this.valueControlsEdge(pred, succ, any(BooleanValue bv | bv.getValue() = testIsTrue))
}
/**
* Gets the block to which `branch` jumps directly when the value of this condition is `v`.
*
* This predicate is intended to help with situations in which an inference can only be made
* based on an edge between a block with multiple successors and a block with multiple
* predecessors. For example, in the following situation, an inference can be made about the
* value of `x` at the end of the `if` statement, but there is no block which is controlled by
* the `if` statement when `x >= y`.
* ```
* if (x < y) {
* x = y;
* }
* return x;
* ```
*/
private IRBlock getBranchSuccessor(AbstractValue v) {
branch.(ConditionalBranchInstruction).getCondition() = this and
exists(BooleanValue bv | bv = v |
bv.getValue() = true and
result.getFirstInstruction() = branch.(ConditionalBranchInstruction).getTrueSuccessor()
or
bv.getValue() = false and
result.getFirstInstruction() = branch.(ConditionalBranchInstruction).getFalseSuccessor()
)
or
exists(SwitchInstruction switch, CaseEdge kind | switch = branch |
switch.getExpression() = this and
result.getFirstInstruction() = switch.getSuccessor(kind) and
kind = v.(MatchValue).getCase()
)
}
/** Holds if (determined by this guard) `left < right + k` evaluates to `isLessThan` if this expression evaluates to `testIsTrue`. */
cached
predicate comparesLt(Operand left, Operand right, int k, boolean isLessThan, boolean testIsTrue) {
exists(BooleanValue value |
compares_lt(this, left, right, k, isLessThan, value) and
value.getValue() = testIsTrue
)
}
/**
* Holds if (determined by this guard) `op < k` evaluates to `isLessThan` if
* this expression evaluates to `value`.
*/
cached
predicate comparesLt(Operand op, int k, boolean isLessThan, AbstractValue value) {
compares_lt(this, op, k, isLessThan, value)
}
/**
* Holds if (determined by this guard) `left < right + k` must be `isLessThan` in `block`.
* If `isLessThan = false` then this implies `left >= right + k`.
*/
cached
predicate ensuresLt(Operand left, Operand right, int k, IRBlock block, boolean isLessThan) {
exists(AbstractValue value |
compares_lt(this, left, right, k, isLessThan, value) and this.valueControls(block, value)
)
}
/**
* Holds if (determined by this guard) `op < k` must be `isLessThan` in `block`.
* If `isLessThan = false` then this implies `op >= k`.
*/
cached
predicate ensuresLt(Operand op, int k, IRBlock block, boolean isLessThan) {
exists(AbstractValue value |
compares_lt(this, op, k, isLessThan, value) and this.valueControls(block, value)
)
}
/**
* Holds if (determined by this guard) `left < right + k` must be `isLessThan` on the edge from
* `pred` to `succ`. If `isLessThan = false` then this implies `left >= right + k`.
*/
cached
predicate ensuresLtEdge(
Operand left, Operand right, int k, IRBlock pred, IRBlock succ, boolean isLessThan
) {
exists(AbstractValue value |
compares_lt(this, left, right, k, isLessThan, value) and
this.valueControlsEdge(pred, succ, value)
)
}
/**
* Holds if (determined by this guard) `op < k` must be `isLessThan` on the edge from
* `pred` to `succ`. If `isLessThan = false` then this implies `op >= k`.
*/
cached
predicate ensuresLtEdge(Operand left, int k, IRBlock pred, IRBlock succ, boolean isLessThan) {
exists(AbstractValue value |
compares_lt(this, left, k, isLessThan, value) and
this.valueControlsEdge(pred, succ, value)
)
}
/** Holds if (determined by this guard) `left == right + k` evaluates to `areEqual` if this expression evaluates to `testIsTrue`. */
cached
predicate comparesEq(Operand left, Operand right, int k, boolean areEqual, boolean testIsTrue) {
exists(BooleanValue value |
compares_eq(this, left, right, k, areEqual, value) and
value.getValue() = testIsTrue
)
}
/** Holds if (determined by this guard) `op == k` evaluates to `areEqual` if this expression evaluates to `value`. */
cached
predicate comparesEq(Operand op, int k, boolean areEqual, AbstractValue value) {
unary_compares_eq(this, op, k, areEqual, false, value)
}
/**
* Holds if (determined by this guard) `left == right + k` must be `areEqual` in `block`.
* If `areEqual = false` then this implies `left != right + k`.
*/
cached
predicate ensuresEq(Operand left, Operand right, int k, IRBlock block, boolean areEqual) {
exists(AbstractValue value |
compares_eq(this, left, right, k, areEqual, value) and this.valueControls(block, value)
)
}
/**
* Holds if (determined by this guard) `op == k` must be `areEqual` in `block`.
* If `areEqual = false` then this implies `op != k`.
*/
cached
predicate ensuresEq(Operand op, int k, IRBlock block, boolean areEqual) {
exists(AbstractValue value |
unary_compares_eq(this, op, k, areEqual, false, value) and this.valueControls(block, value)
)
}
/**
* Holds if (determined by this guard) `left == right + k` must be `areEqual` on the edge from
* `pred` to `succ`. If `areEqual = false` then this implies `left != right + k`.
*/
cached
predicate ensuresEqEdge(
Operand left, Operand right, int k, IRBlock pred, IRBlock succ, boolean areEqual
) {
exists(AbstractValue value |
compares_eq(this, left, right, k, areEqual, value) and
this.valueControlsEdge(pred, succ, value)
)
}
/**
* Holds if (determined by this guard) `op == k` must be `areEqual` on the edge from
* `pred` to `succ`. If `areEqual = false` then this implies `op != k`.
*/
cached
predicate ensuresEqEdge(Operand op, int k, IRBlock pred, IRBlock succ, boolean areEqual) {
exists(AbstractValue value |
unary_compares_eq(this, op, k, areEqual, false, value) and
this.valueControlsEdge(pred, succ, value)
)
}
/**
* Holds if this condition controls `block`, meaning that `block` is only
* entered if the value of this condition is `v`. This helper
* predicate does not necessarily hold for binary logical operations like
* `&&` and `||`. See the detailed explanation on predicate `controls`.
*/
private predicate controlsBlock(IRBlock controlled, AbstractValue v) {
not isUnreachedBlock(controlled) and
//
// For this block to control the block `controlled` with `testIsTrue` the
// following must hold: Execution must have passed through the test; that
// is, `this` must strictly dominate `controlled`. Execution must have
// passed through the `testIsTrue` edge leaving `this`.
//
// Although "passed through the true edge" implies that
// `getBranchSuccessor(true)` dominates `controlled`, the reverse is not
// true, as flow may have passed through another edge to get to
// `getBranchSuccessor(true)`, so we need to assert that
// `getBranchSuccessor(true)` dominates `controlled` *and* that all
// predecessors of `getBranchSuccessor(true)` are either `this` or
// dominated by `getBranchSuccessor(true)`.
//
// For example, in the following snippet:
//
// if (x)
// controlled;
// false_successor;
// uncontrolled;
//
// `false_successor` dominates `uncontrolled`, but not all of its
// predecessors are `this` (`if (x)`) or dominated by itself. Whereas in
// the following code:
//
// if (x)
// while (controlled)
// also_controlled;
// false_successor;
// uncontrolled;
//
// the block `while (controlled)` is controlled because all of its
// predecessors are `this` (`if (x)`) or (in the case of `also_controlled`)
// dominated by itself.
//
// The additional constraint on the predecessors of the test successor implies
// that `this` strictly dominates `controlled` so that isn't necessary to check
// directly.
exists(IRBlock succ |
succ = this.getBranchSuccessor(v) and
this.hasDominatingEdgeTo(succ) and
succ.dominates(controlled)
)
}
/**
* Holds if `(this, succ)` is an edge that dominates `succ`, that is, all other
* predecessors of `succ` are dominated by `succ`. This implies that `this` is the
* immediate dominator of `succ`.
*
* This is a necessary and sufficient condition for an edge to dominate anything,
* and in particular `bb1.hasDominatingEdgeTo(bb2) and bb2.dominates(bb3)` means
* that the edge `(bb1, bb2)` dominates `bb3`.
*/
private predicate hasDominatingEdgeTo(IRBlock succ) {
exists(IRBlock branchBlock | branchBlock = this.getBranchBlock() |
branchBlock.immediatelyDominates(succ) and
branchBlock.getASuccessor() = succ and
forall(IRBlock pred | pred = succ.getAPredecessor() and pred != branchBlock |
succ.dominates(pred)
or
// An unreachable `pred` is vacuously dominated by `succ` since all
// paths from the entry to `pred` go through `succ`. Such vacuous
// dominance is not included in the `dominates` predicate since that
// could cause quadratic blow-up.
not pred.isReachableFromFunctionEntry()
)
)
}
pragma[noinline]
private IRBlock getBranchBlock() { result = branch.getBlock() }
}
private Instruction getBranchForCondition(Instruction guard) {
result.(ConditionalBranchInstruction).getCondition() = guard
or
exists(LogicalNotInstruction cond |
result = getBranchForCondition(cond) and cond.getUnary() = guard
)
or
result.(SwitchInstruction).getExpression() = guard
}
/**
* Holds if `left == right + k` is `areEqual` given that test is `testIsTrue`.
*
* Beware making mistaken logical implications here relating `areEqual` and `testIsTrue`.
*/
private predicate compares_eq(
Instruction test, Operand left, Operand right, int k, boolean areEqual, AbstractValue value
) {
/* The simple case where the test *is* the comparison so areEqual = testIsTrue xor eq. */
exists(AbstractValue v | simple_comparison_eq(test, left, right, k, v) |
areEqual = true and value = v
or
areEqual = false and value = v.getDualValue()
)
or
// I think this is handled by forwarding in controlsBlock.
//or
//logical_comparison_eq(test, left, right, k, areEqual, testIsTrue)
/* a == b + k => b == a - k */
exists(int mk | k = -mk | compares_eq(test, right, left, mk, areEqual, value))
or
complex_eq(test, left, right, k, areEqual, value)
or
/* (x is true => (left == right + k)) => (!x is false => (left == right + k)) */
exists(AbstractValue dual | value = dual.getDualValue() |
compares_eq(test.(LogicalNotInstruction).getUnary(), left, right, k, areEqual, dual)
)
or
compares_eq(test.(BuiltinExpectCallInstruction).getCondition(), left, right, k, areEqual, value)
}
/**
* Holds if `op == k` is `areEqual` given that `test` is equal to `value`.
*
* Many internal predicates in this file have a `inNonZeroCase` column.
* Ideally, the `k` column would be a type such as `Option<int>::Option`, to
* represent whether we have a concrete value `k` such that `op == k`, or whether
* we only know that `op != 0`.
* However, cannot instantiate `Option` with an infinite type. Thus the boolean
* `inNonZeroCase` is used to distinquish the `Some` (where we have a concrete
* value `k`) and `None` cases (where we only know that `op != 0`).
*
* Thus, if `inNonZeroCase = true` then `op != 0` and the value of `k` is
* meaningless.
*
* To see why `inNonZeroCase` is needed consider the following C program:
* ```c
* char* p = ...;
* if(p) {
* use(p);
* }
* ```
* in C++ there would be an int-to-bool conversion on `p`. However, since C
* does not have booleans there is no conversion. We want to be able to
* conclude that `p` is non-zero in the true branch, so we need to give `k`
* some value. However, simply setting `k = 1` would make the rest of the
* analysis think that `k == 1` holds inside the branch. So we distinquish
* between the above case and
* ```c
* if(p == 1) {
* use(p)
* }
* ```
* by setting `inNonZeroCase` to `true` in the former case, but not in the
* latter.
*/
private predicate unary_compares_eq(
Instruction test, Operand op, int k, boolean areEqual, boolean inNonZeroCase, AbstractValue value
) {
/* The simple case where the test *is* the comparison so areEqual = testIsTrue xor eq. */
exists(AbstractValue v |
unary_simple_comparison_eq(test, k, inNonZeroCase, v) and op.getDef() = test
|
areEqual = true and value = v
or
areEqual = false and value = v.getDualValue()
)
or
unary_complex_eq(test, op, k, areEqual, inNonZeroCase, value)
or
/* (x is true => (op == k)) => (!x is false => (op == k)) */
exists(AbstractValue dual, boolean inNonZeroCase0 |
value = dual.getDualValue() and
unary_compares_eq(test.(LogicalNotInstruction).getUnary(), op, k, inNonZeroCase0, areEqual, dual)
|
k = 0 and inNonZeroCase = inNonZeroCase0
or
k != 0 and inNonZeroCase = true
)
or
// ((test is `areEqual` => op == const + k2) and const == `k1`) =>
// test is `areEqual` => op == k1 + k2
inNonZeroCase = false and
exists(int k1, int k2, ConstantInstruction const |
compares_eq(test, op, const.getAUse(), k2, areEqual, value) and
int_value(const) = k1 and
k = k1 + k2
)
or
unary_compares_eq(test.(BuiltinExpectCallInstruction).getCondition(), op, k, areEqual,
inNonZeroCase, value)
}
/** Rearrange various simple comparisons into `left == right + k` form. */
private predicate simple_comparison_eq(
CompareInstruction cmp, Operand left, Operand right, int k, AbstractValue value
) {
left = cmp.getLeftOperand() and
cmp instanceof CompareEQInstruction and
right = cmp.getRightOperand() and
k = 0 and
value.(BooleanValue).getValue() = true
or
left = cmp.getLeftOperand() and
cmp instanceof CompareNEInstruction and
right = cmp.getRightOperand() and
k = 0 and
value.(BooleanValue).getValue() = false
}
/**
* Rearrange various simple comparisons into `op == k` form.
*/
private predicate unary_simple_comparison_eq(
Instruction test, int k, boolean inNonZeroCase, AbstractValue value
) {
exists(SwitchInstruction switch, CaseEdge case |
test = switch.getExpression() and
case = value.(MatchValue).getCase() and
exists(switch.getSuccessor(case)) and
case.getValue().toInt() = k and
inNonZeroCase = false
)
or
// Any instruction with an integral type could potentially be part of a
// check for nullness when used in a guard. So we include all integral
// typed instructions here. However, since some of these instructions are
// already included as guards in other cases, we exclude those here.
// These are instructions that compute a binary equality or inequality
// relation. For example, the following:
// ```cpp
// if(a == b + 42) { ... }
// ```
// generates the following IR:
// ```
// r1(glval<int>) = VariableAddress[a] :
// r2(int) = Load[a] : &:r1, m1
// r3(glval<int>) = VariableAddress[b] :
// r4(int) = Load[b] : &:r3, m2
// r5(int) = Constant[42] :
// r6(int) = Add : r4, r5
// r7(bool) = CompareEQ : r2, r6
// v1(void) = ConditionalBranch : r7
// ```
// and since `r7` is an integral typed instruction this predicate could
// include a case for when `r7` evaluates to true (in which case we would
// infer that `r6` was non-zero, and a case for when `r7` evaluates to false
// (in which case we would infer that `r6` was zero).
// However, since `a == b + 42` is already supported when reasoning about
// binary equalities we exclude those cases here.
not test.isGLValue() and
not simple_comparison_eq(test, _, _, _, _) and
not simple_comparison_lt(test, _, _, _) and
not test = any(SwitchInstruction switch).getExpression() and
(
test.getResultIRType() instanceof IRAddressType or
test.getResultIRType() instanceof IRIntegerType or
test.getResultIRType() instanceof IRBooleanType
) and
(
k = 1 and
value.(BooleanValue).getValue() = true and
inNonZeroCase = true
or
k = 0 and
value.(BooleanValue).getValue() = false and
inNonZeroCase = false
)
}
/** A call to the builtin operation `__builtin_expect`. */
private class BuiltinExpectCallInstruction extends CallInstruction {
BuiltinExpectCallInstruction() { this.getStaticCallTarget().hasName("__builtin_expect") }
/** Gets the condition of this call. */
Instruction getCondition() {
// The first parameter of `__builtin_expect` has type `long`. So we skip
// the conversion when inferring guards.
result = this.getArgument(0).(ConvertInstruction).getUnary()
}
}
/**
* Holds if `left == right + k` is `areEqual` if `cmp` evaluates to `value`,
* and `cmp` is an instruction that compares the value of
* `__builtin_expect(left == right + k, _)` to `0`.
*/
private predicate builtin_expect_eq(
CompareInstruction cmp, Operand left, Operand right, int k, boolean areEqual, AbstractValue value
) {
exists(BuiltinExpectCallInstruction call, Instruction const, AbstractValue innerValue |
int_value(const) = 0 and
cmp.hasOperands(call.getAUse(), const.getAUse()) and
compares_eq(call.getCondition(), left, right, k, areEqual, innerValue)
|
cmp instanceof CompareNEInstruction and
value = innerValue
or
cmp instanceof CompareEQInstruction and
value.getDualValue() = innerValue
)
}
private predicate complex_eq(
CompareInstruction cmp, Operand left, Operand right, int k, boolean areEqual, AbstractValue value
) {
sub_eq(cmp, left, right, k, areEqual, value)
or
add_eq(cmp, left, right, k, areEqual, value)
or
builtin_expect_eq(cmp, left, right, k, areEqual, value)
}
/**
* Holds if `op == k` is `areEqual` if `cmp` evaluates to `value`, and `cmp` is
* an instruction that compares the value of `__builtin_expect(op == k, _)` to `0`.
*/
private predicate unary_builtin_expect_eq(
CompareInstruction cmp, Operand op, int k, boolean areEqual, boolean inNonZeroCase,
AbstractValue value
) {
exists(BuiltinExpectCallInstruction call, Instruction const, AbstractValue innerValue |
int_value(const) = 0 and
cmp.hasOperands(call.getAUse(), const.getAUse()) and
unary_compares_eq(call.getCondition(), op, k, areEqual, inNonZeroCase, innerValue)
|
cmp instanceof CompareNEInstruction and
value = innerValue
or
cmp instanceof CompareEQInstruction and
value.getDualValue() = innerValue
)
}
private predicate unary_complex_eq(
Instruction test, Operand op, int k, boolean areEqual, boolean inNonZeroCase, AbstractValue value
) {
unary_sub_eq(test, op, k, areEqual, inNonZeroCase, value)
or
unary_add_eq(test, op, k, areEqual, inNonZeroCase, value)
or
unary_builtin_expect_eq(test, op, k, areEqual, inNonZeroCase, value)
}
/*
* Simplification of inequality expressions
* Simplify conditions in the source to the canonical form l < r + k.
*/
/** Holds if `left < right + k` evaluates to `isLt` given that test is `testIsTrue`. */
private predicate compares_lt(
Instruction test, Operand left, Operand right, int k, boolean isLt, AbstractValue value
) {
/* In the simple case, the test is the comparison, so isLt = testIsTrue */
simple_comparison_lt(test, left, right, k) and
value.(BooleanValue).getValue() = isLt
or
complex_lt(test, left, right, k, isLt, value)
or
/* (not (left < right + k)) => (left >= right + k) */
exists(boolean isGe | isLt = isGe.booleanNot() | compares_ge(test, left, right, k, isGe, value))
or
/* (x is true => (left < right + k)) => (!x is false => (left < right + k)) */
exists(AbstractValue dual | value = dual.getDualValue() |
compares_lt(test.(LogicalNotInstruction).getUnary(), left, right, k, isLt, dual)
)
}
/** Holds if `op < k` evaluates to `isLt` given that `test` evaluates to `value`. */
private predicate compares_lt(Instruction test, Operand op, int k, boolean isLt, AbstractValue value) {
unary_simple_comparison_lt(test, k, isLt, value) and
op.getDef() = test
or
complex_lt(test, op, k, isLt, value)
or
/* (x is true => (op < k)) => (!x is false => (op < k)) */
exists(AbstractValue dual | value = dual.getDualValue() |
compares_lt(test.(LogicalNotInstruction).getUnary(), op, k, isLt, dual)
)
or
exists(int k1, int k2, ConstantInstruction const |
compares_lt(test, op, const.getAUse(), k2, isLt, value) and
int_value(const) = k1 and
k = k1 + k2
)
}
/** `(a < b + k) => (b > a - k) => (b >= a + (1-k))` */
private predicate compares_ge(
Instruction test, Operand left, Operand right, int k, boolean isGe, AbstractValue value
) {
exists(int onemk | k = 1 - onemk | compares_lt(test, right, left, onemk, isGe, value))
}
/** Rearrange various simple comparisons into `left < right + k` form. */
private predicate simple_comparison_lt(CompareInstruction cmp, Operand left, Operand right, int k) {
left = cmp.getLeftOperand() and
cmp instanceof CompareLTInstruction and
right = cmp.getRightOperand() and
k = 0
or
left = cmp.getLeftOperand() and
cmp instanceof CompareLEInstruction and
right = cmp.getRightOperand() and
k = 1
or
right = cmp.getLeftOperand() and
cmp instanceof CompareGTInstruction and
left = cmp.getRightOperand() and
k = 0
or
right = cmp.getLeftOperand() and
cmp instanceof CompareGEInstruction and
left = cmp.getRightOperand() and
k = 1
}
/** Rearrange various simple comparisons into `op < k` form. */
private predicate unary_simple_comparison_lt(
Instruction test, int k, boolean isLt, AbstractValue value
) {
exists(SwitchInstruction switch, CaseEdge case |
test = switch.getExpression() and
case = value.(MatchValue).getCase() and
exists(switch.getSuccessor(case)) and
case.getMaxValue() > case.getMinValue()
|
// op <= k => op < k - 1
isLt = true and
case.getMaxValue().toInt() = k - 1
or
isLt = false and
case.getMinValue().toInt() = k
)
}
private predicate complex_lt(
CompareInstruction cmp, Operand left, Operand right, int k, boolean isLt, AbstractValue value
) {
sub_lt(cmp, left, right, k, isLt, value)
or
add_lt(cmp, left, right, k, isLt, value)
}
private predicate complex_lt(
Instruction test, Operand left, int k, boolean isLt, AbstractValue value
) {
sub_lt(test, left, k, isLt, value)
or
add_lt(test, left, k, isLt, value)
}
// left - x < right + c => left < right + (c+x)
// left < (right - x) + c => left < right + (c-x)
private predicate sub_lt(
CompareInstruction cmp, Operand left, Operand right, int k, boolean isLt, AbstractValue value
) {
exists(SubInstruction lhs, int c, int x |
compares_lt(cmp, lhs.getAUse(), right, c, isLt, value) and
left = lhs.getLeftOperand() and
x = int_value(lhs.getRight()) and
k = c + x
)
or
exists(SubInstruction rhs, int c, int x |
compares_lt(cmp, left, rhs.getAUse(), c, isLt, value) and
right = rhs.getLeftOperand() and
x = int_value(rhs.getRight()) and
k = c - x
)
or
exists(PointerSubInstruction lhs, int c, int x |
compares_lt(cmp, lhs.getAUse(), right, c, isLt, value) and
left = lhs.getLeftOperand() and
x = int_value(lhs.getRight()) and
k = c + x
)
or
exists(PointerSubInstruction rhs, int c, int x |
compares_lt(cmp, left, rhs.getAUse(), c, isLt, value) and
right = rhs.getLeftOperand() and
x = int_value(rhs.getRight()) and
k = c - x
)
}
private predicate sub_lt(Instruction test, Operand left, int k, boolean isLt, AbstractValue value) {
exists(SubInstruction lhs, int c, int x |
compares_lt(test, lhs.getAUse(), c, isLt, value) and
left = lhs.getLeftOperand() and
x = int_value(lhs.getRight()) and
k = c + x
)
or
exists(PointerSubInstruction lhs, int c, int x |
compares_lt(test, lhs.getAUse(), c, isLt, value) and
left = lhs.getLeftOperand() and
x = int_value(lhs.getRight()) and
k = c + x
)
}
// left + x < right + c => left < right + (c-x)
// left < (right + x) + c => left < right + (c+x)
private predicate add_lt(
CompareInstruction cmp, Operand left, Operand right, int k, boolean isLt, AbstractValue value
) {
exists(AddInstruction lhs, int c, int x |
compares_lt(cmp, lhs.getAUse(), right, c, isLt, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
or
exists(AddInstruction rhs, int c, int x |
compares_lt(cmp, left, rhs.getAUse(), c, isLt, value) and
(
right = rhs.getLeftOperand() and x = int_value(rhs.getRight())
or
right = rhs.getRightOperand() and x = int_value(rhs.getLeft())
) and
k = c + x
)
or
exists(PointerAddInstruction lhs, int c, int x |
compares_lt(cmp, lhs.getAUse(), right, c, isLt, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
or
exists(PointerAddInstruction rhs, int c, int x |
compares_lt(cmp, left, rhs.getAUse(), c, isLt, value) and
(
right = rhs.getLeftOperand() and x = int_value(rhs.getRight())
or
right = rhs.getRightOperand() and x = int_value(rhs.getLeft())
) and
k = c + x
)
}
private predicate add_lt(Instruction test, Operand left, int k, boolean isLt, AbstractValue value) {
exists(AddInstruction lhs, int c, int x |
compares_lt(test, lhs.getAUse(), c, isLt, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
or
exists(PointerAddInstruction lhs, int c, int x |
compares_lt(test, lhs.getAUse(), c, isLt, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
}
// left - x == right + c => left == right + (c+x)
// left == (right - x) + c => left == right + (c-x)
private predicate sub_eq(
CompareInstruction cmp, Operand left, Operand right, int k, boolean areEqual, AbstractValue value
) {
exists(SubInstruction lhs, int c, int x |
compares_eq(cmp, lhs.getAUse(), right, c, areEqual, value) and
left = lhs.getLeftOperand() and
x = int_value(lhs.getRight()) and
k = c + x
)
or
exists(SubInstruction rhs, int c, int x |
compares_eq(cmp, left, rhs.getAUse(), c, areEqual, value) and
right = rhs.getLeftOperand() and
x = int_value(rhs.getRight()) and
k = c - x
)
or
exists(PointerSubInstruction lhs, int c, int x |
compares_eq(cmp, lhs.getAUse(), right, c, areEqual, value) and
left = lhs.getLeftOperand() and
x = int_value(lhs.getRight()) and
k = c + x
)
or
exists(PointerSubInstruction rhs, int c, int x |
compares_eq(cmp, left, rhs.getAUse(), c, areEqual, value) and
right = rhs.getLeftOperand() and
x = int_value(rhs.getRight()) and
k = c - x
)
}
// op - x == c => op == (c+x)
private predicate unary_sub_eq(
Instruction test, Operand op, int k, boolean areEqual, boolean inNonZeroCase, AbstractValue value
) {
inNonZeroCase = false and
exists(SubInstruction sub, int c, int x |
unary_compares_eq(test, sub.getAUse(), c, areEqual, inNonZeroCase, value) and
op = sub.getLeftOperand() and
x = int_value(sub.getRight()) and
k = c + x
)
or
inNonZeroCase = false and
exists(PointerSubInstruction sub, int c, int x |
unary_compares_eq(test, sub.getAUse(), c, areEqual, inNonZeroCase, value) and
op = sub.getLeftOperand() and
x = int_value(sub.getRight()) and
k = c + x
)
}
// left + x == right + c => left == right + (c-x)
// left == (right + x) + c => left == right + (c+x)
private predicate add_eq(
CompareInstruction cmp, Operand left, Operand right, int k, boolean areEqual, AbstractValue value
) {
exists(AddInstruction lhs, int c, int x |
compares_eq(cmp, lhs.getAUse(), right, c, areEqual, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
or
exists(AddInstruction rhs, int c, int x |
compares_eq(cmp, left, rhs.getAUse(), c, areEqual, value) and
(
right = rhs.getLeftOperand() and x = int_value(rhs.getRight())
or
right = rhs.getRightOperand() and x = int_value(rhs.getLeft())
) and
k = c + x
)
or
exists(PointerAddInstruction lhs, int c, int x |
compares_eq(cmp, lhs.getAUse(), right, c, areEqual, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
or
exists(PointerAddInstruction rhs, int c, int x |
compares_eq(cmp, left, rhs.getAUse(), c, areEqual, value) and
(
right = rhs.getLeftOperand() and x = int_value(rhs.getRight())
or
right = rhs.getRightOperand() and x = int_value(rhs.getLeft())
) and
k = c + x
)
}
// left + x == right + c => left == right + (c-x)
private predicate unary_add_eq(
Instruction test, Operand left, int k, boolean areEqual, boolean inNonZeroCase,
AbstractValue value
) {
inNonZeroCase = false and
exists(AddInstruction lhs, int c, int x |
unary_compares_eq(test, lhs.getAUse(), c, areEqual, inNonZeroCase, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
or
inNonZeroCase = false and
exists(PointerAddInstruction lhs, int c, int x |
unary_compares_eq(test, lhs.getAUse(), c, areEqual, inNonZeroCase, value) and
(
left = lhs.getLeftOperand() and x = int_value(lhs.getRight())
or
left = lhs.getRightOperand() and x = int_value(lhs.getLeft())
) and
k = c - x
)
}
private class IntegerOrPointerConstantInstruction extends ConstantInstruction {
IntegerOrPointerConstantInstruction() {
this instanceof IntegerConstantInstruction or
this instanceof PointerConstantInstruction
}
}
/** The int value of integer constant expression. */
private int int_value(Instruction i) {
result = i.(IntegerOrPointerConstantInstruction).getValue().toInt()
}