Files
codeql/java/ql/lib/semmle/code/java/dataflow/RangeAnalysis.qll
2022-05-17 14:11:05 +02:00

909 lines
29 KiB
Plaintext

/**
* Provides classes and predicates for range analysis.
*
* An inferred bound can either be a specific integer, the abstract value of an
* SSA variable, or the abstract value of an interesting expression. The latter
* category includes array lengths that are not SSA variables.
*
* If an inferred bound relies directly on a condition, then this condition is
* reported as the reason for the bound.
*/
/*
* This library tackles range analysis as a flow problem. Consider e.g.:
* ```
* len = arr.length;
* if (x < len) { ... y = x-1; ... y ... }
* ```
* In this case we would like to infer `y <= arr.length - 2`, and this is
* accomplished by tracking the bound through a sequence of steps:
* ```
* arr.length --> len = .. --> x < len --> x-1 --> y = .. --> y
* ```
*
* In its simplest form the step relation `E1 --> E2` relates two expressions
* such that `E1 <= B` implies `E2 <= B` for any `B` (with a second separate
* step relation handling lower bounds). Examples of such steps include
* assignments `E2 = E1` and conditions `x <= E1` where `E2` is a use of `x`
* guarded by the condition.
*
* In order to handle subtractions and additions with constants, and strict
* comparisons, the step relation is augmented with an integer delta. With this
* generalization `E1 --(delta)--> E2` relates two expressions and an integer
* such that `E1 <= B` implies `E2 <= B + delta` for any `B`. This corresponds
* to the predicate `boundFlowStep`.
*
* The complete range analysis is then implemented as the transitive closure of
* the step relation summing the deltas along the way. If `E1` transitively
* steps to `E2`, `delta` is the sum of deltas along the path, and `B` is an
* interesting bound equal to the value of `E1` then `E2 <= B + delta`. This
* corresponds to the predicate `bounded`.
*
* Phi nodes need a little bit of extra handling. Consider `x0 = phi(x1, x2)`.
* There are essentially two cases:
* - If `x1 <= B + d1` and `x2 <= B + d2` then `x0 <= B + max(d1,d2)`.
* - If `x1 <= B + d1` and `x2 <= x0 + d2` with `d2 <= 0` then `x0 <= B + d1`.
* The first case is for whenever a bound can be proven without taking looping
* into account. The second case is relevant when `x2` comes from a back-edge
* where we can prove that the variable has been non-increasing through the
* loop-iteration as this means that any upper bound that holds prior to the
* loop also holds for the variable during the loop.
* This generalizes to a phi node with `n` inputs, so if
* `x0 = phi(x1, ..., xn)` and `xi <= B + delta` for one of the inputs, then we
* also have `x0 <= B + delta` if we can prove either:
* - `xj <= B + d` with `d <= delta` or
* - `xj <= x0 + d` with `d <= 0`
* for each input `xj`.
*
* As all inferred bounds can be related directly to a path in the source code
* the only source of non-termination is if successive redundant (and thereby
* increasingly worse) bounds are calculated along a loop in the source code.
* We prevent this by weakening the bound to a small finite set of bounds when
* a path follows a second back-edge (we postpone weakening till the second
* back-edge as a precise bound might require traversing a loop once).
*/
import java
private import SSA
private import RangeUtils
private import semmle.code.java.dataflow.internal.rangeanalysis.SsaReadPositionCommon
private import semmle.code.java.controlflow.internal.GuardsLogic
private import semmle.code.java.security.RandomDataSource
private import SignAnalysis
private import ModulusAnalysis
private import semmle.code.java.Reflection
private import semmle.code.java.Collections
private import semmle.code.java.Maps
import Bound
cached
private module RangeAnalysisCache {
cached
module RangeAnalysisPublic {
/**
* Holds if `b + delta` is a valid bound for `e`.
* - `upper = true` : `e <= b + delta`
* - `upper = false` : `e >= b + delta`
*
* The reason for the bound is given by `reason` and may be either a condition
* or `NoReason` if the bound was proven directly without the use of a bounding
* condition.
*/
cached
predicate bounded(Expr e, Bound b, int delta, boolean upper, Reason reason) {
bounded(e, b, delta, upper, _, _, reason) and
bestBound(e, b, delta, upper)
}
}
/**
* Holds if `guard = boundFlowCond(_, _, _, _, _) or guard = eqFlowCond(_, _, _, _, _)`.
*/
cached
predicate possibleReason(Guard guard) {
guard = boundFlowCond(_, _, _, _, _) or guard = eqFlowCond(_, _, _, _, _)
}
}
private import RangeAnalysisCache
import RangeAnalysisPublic
/**
* Holds if `b + delta` is a valid bound for `e` and this is the best such delta.
* - `upper = true` : `e <= b + delta`
* - `upper = false` : `e >= b + delta`
*/
private predicate bestBound(Expr e, Bound b, int delta, boolean upper) {
delta = min(int d | bounded(e, b, d, upper, _, _, _)) and upper = true
or
delta = max(int d | bounded(e, b, d, upper, _, _, _)) and upper = false
}
/**
* Holds if `comp` corresponds to:
* - `upper = true` : `v <= e + delta` or `v < e + delta`
* - `upper = false` : `v >= e + delta` or `v > e + delta`
*/
private predicate boundCondition(
ComparisonExpr comp, SsaVariable v, Expr e, int delta, boolean upper
) {
comp.getLesserOperand() = ssaRead(v, delta) and e = comp.getGreaterOperand() and upper = true
or
comp.getGreaterOperand() = ssaRead(v, delta) and e = comp.getLesserOperand() and upper = false
or
exists(SubExpr sub, ConstantIntegerExpr c, int d |
// (v - d) - e < c
comp.getLesserOperand() = sub and
comp.getGreaterOperand() = c and
sub.getLeftOperand() = ssaRead(v, d) and
sub.getRightOperand() = e and
upper = true and
delta = d + c.getIntValue()
or
// (v - d) - e > c
comp.getGreaterOperand() = sub and
comp.getLesserOperand() = c and
sub.getLeftOperand() = ssaRead(v, d) and
sub.getRightOperand() = e and
upper = false and
delta = d + c.getIntValue()
or
// e - (v - d) < c
comp.getLesserOperand() = sub and
comp.getGreaterOperand() = c and
sub.getLeftOperand() = e and
sub.getRightOperand() = ssaRead(v, d) and
upper = false and
delta = d - c.getIntValue()
or
// e - (v - d) > c
comp.getGreaterOperand() = sub and
comp.getLesserOperand() = c and
sub.getLeftOperand() = e and
sub.getRightOperand() = ssaRead(v, d) and
upper = true and
delta = d - c.getIntValue()
)
}
/**
* Holds if `comp` is a comparison between `x` and `y` for which `y - x` has a
* fixed value modulo some `mod > 1`, such that the comparison can be
* strengthened by `strengthen` when evaluating to `testIsTrue`.
*/
private predicate modulusComparison(ComparisonExpr comp, boolean testIsTrue, int strengthen) {
exists(
Bound b, int v1, int v2, int mod1, int mod2, int mod, boolean resultIsStrict, int d, int k
|
// If `x <= y` and `x =(mod) b + v1` and `y =(mod) b + v2` then
// `0 <= y - x =(mod) v2 - v1`. By choosing `k =(mod) v2 - v1` with
// `0 <= k < mod` we get `k <= y - x`. If the resulting comparison is
// strict then the strengthening amount is instead `k - 1` modulo `mod`:
// `x < y` means `0 <= y - x - 1 =(mod) k - 1` so `k - 1 <= y - x - 1` and
// thus `k - 1 < y - x` with `0 <= k - 1 < mod`.
exprModulus(comp.getLesserOperand(), b, v1, mod1) and
exprModulus(comp.getGreaterOperand(), b, v2, mod2) and
mod = mod1.gcd(mod2) and
mod != 1 and
(testIsTrue = true or testIsTrue = false) and
(
if comp.isStrict()
then resultIsStrict = testIsTrue
else resultIsStrict = testIsTrue.booleanNot()
) and
(
resultIsStrict = true and d = 1
or
resultIsStrict = false and d = 0
) and
(
testIsTrue = true and k = v2 - v1
or
testIsTrue = false and k = v1 - v2
) and
strengthen = (((k - d) % mod) + mod) % mod
)
}
/**
* Gets a condition that tests whether `v` is bounded by `e + delta`.
*
* If the condition evaluates to `testIsTrue`:
* - `upper = true` : `v <= e + delta`
* - `upper = false` : `v >= e + delta`
*/
private Guard boundFlowCond(SsaVariable v, Expr e, int delta, boolean upper, boolean testIsTrue) {
exists(
ComparisonExpr comp, int d1, int d2, int d3, int strengthen, boolean compIsUpper,
boolean resultIsStrict
|
comp = result and
boundCondition(comp, v, e, d1, compIsUpper) and
(testIsTrue = true or testIsTrue = false) and
upper = compIsUpper.booleanXor(testIsTrue.booleanNot()) and
(
if comp.isStrict()
then resultIsStrict = testIsTrue
else resultIsStrict = testIsTrue.booleanNot()
) and
(
if v.getSourceVariable().getType() instanceof IntegralType
then
upper = true and strengthen = -1
or
upper = false and strengthen = 1
else strengthen = 0
) and
(
exists(int k | modulusComparison(comp, testIsTrue, k) and d2 = strengthen * k)
or
not modulusComparison(comp, testIsTrue, _) and d2 = 0
) and
// A strict inequality `x < y` can be strengthened to `x <= y - 1`.
(
resultIsStrict = true and d3 = strengthen
or
resultIsStrict = false and d3 = 0
) and
delta = d1 + d2 + d3
)
or
exists(boolean testIsTrue0 |
implies_v2(result, testIsTrue, boundFlowCond(v, e, delta, upper, testIsTrue0), testIsTrue0)
)
or
result = eqFlowCond(v, e, delta, true, testIsTrue) and
(upper = true or upper = false)
or
// guard that tests whether `v2` is bounded by `e + delta + d1 - d2` and
// exists a guard `guardEq` such that `v = v2 - d1 + d2`.
exists(SsaVariable v2, Guard guardEq, boolean eqIsTrue, int d1, int d2 |
guardEq = eqFlowCond(v, ssaRead(v2, d1), d2, true, eqIsTrue) and
result = boundFlowCond(v2, e, delta + d1 - d2, upper, testIsTrue) and
// guardEq needs to control guard
guardEq.directlyControls(result.getBasicBlock(), eqIsTrue)
)
}
private newtype TReason =
TNoReason() or
TCondReason(Guard guard) { possibleReason(guard) }
/**
* A reason for an inferred bound. This can either be `CondReason` if the bound
* is due to a specific condition, or `NoReason` if the bound is inferred
* without going through a bounding condition.
*/
abstract class Reason extends TReason {
/** Gets a textual representation of this reason. */
abstract string toString();
}
/**
* A reason for an inferred bound that indicates that the bound is inferred
* without going through a bounding condition.
*/
class NoReason extends Reason, TNoReason {
override string toString() { result = "NoReason" }
}
/** A reason for an inferred bound pointing to a condition. */
class CondReason extends Reason, TCondReason {
/** Gets the condition that is the reason for the bound. */
Guard getCond() { this = TCondReason(result) }
override string toString() { result = getCond().toString() }
}
/**
* Holds if `e + delta` is a valid bound for `v` at `pos`.
* - `upper = true` : `v <= e + delta`
* - `upper = false` : `v >= e + delta`
*/
private predicate boundFlowStepSsa(
SsaVariable v, SsaReadPosition pos, Expr e, int delta, boolean upper, Reason reason
) {
ssaUpdateStep(v, e, delta) and
pos.hasReadOfVar(v) and
(upper = true or upper = false) and
reason = TNoReason()
or
exists(Guard guard, boolean testIsTrue |
pos.hasReadOfVar(v) and
guard = boundFlowCond(v, e, delta, upper, testIsTrue) and
guardDirectlyControlsSsaRead(guard, pos, testIsTrue) and
reason = TCondReason(guard)
)
}
/** Holds if `v != e + delta` at `pos` and `v` is of integral type. */
private predicate unequalFlowStepIntegralSsa(
SsaVariable v, SsaReadPosition pos, Expr e, int delta, Reason reason
) {
v.getSourceVariable().getType() instanceof IntegralType and
exists(Guard guard, boolean testIsTrue |
pos.hasReadOfVar(v) and
guard = eqFlowCond(v, e, delta, false, testIsTrue) and
guardDirectlyControlsSsaRead(guard, pos, testIsTrue) and
reason = TCondReason(guard)
)
}
/**
* Holds if a cast from `fromtyp` to `totyp` can be ignored for the purpose of
* range analysis.
*/
private predicate safeCast(Type fromtyp, Type totyp) {
exists(PrimitiveType pfrom, PrimitiveType pto | pfrom = fromtyp and pto = totyp |
pfrom = pto
or
pfrom.hasName("char") and pto.hasName(["int", "long", "float", "double"])
or
pfrom.hasName("byte") and pto.hasName(["short", "int", "long", "float", "double"])
or
pfrom.hasName("short") and pto.hasName(["int", "long", "float", "double"])
or
pfrom.hasName("int") and pto.hasName(["long", "float", "double"])
or
pfrom.hasName("long") and pto.hasName(["float", "double"])
or
pfrom.hasName("float") and pto.hasName("double")
or
pfrom.hasName("double") and pto.hasName("float")
)
or
safeCast(fromtyp.(BoxedType).getPrimitiveType(), totyp)
or
safeCast(fromtyp, totyp.(BoxedType).getPrimitiveType())
}
/**
* A cast that can be ignored for the purpose of range analysis.
*/
private class RangeAnalysisSafeCastingExpr extends CastingExpr {
RangeAnalysisSafeCastingExpr() {
safeCast(getExpr().getType(), getType()) or
this instanceof ImplicitCastExpr or
this instanceof ImplicitNotNullExpr or
this instanceof ImplicitCoercionToUnitExpr
}
}
/**
* Holds if `typ` is a small integral type with the given lower and upper bounds.
*/
private predicate typeBound(Type typ, int lowerbound, int upperbound) {
typ.(PrimitiveType).hasName("byte") and lowerbound = -128 and upperbound = 127
or
typ.(PrimitiveType).hasName("short") and lowerbound = -32768 and upperbound = 32767
or
typ.(PrimitiveType).hasName("char") and lowerbound = 0 and upperbound = 65535
or
typeBound(typ.(BoxedType).getPrimitiveType(), lowerbound, upperbound)
}
/**
* A cast to a small integral type that may overflow or underflow.
*/
private class NarrowingCastingExpr extends CastingExpr {
NarrowingCastingExpr() {
not this instanceof RangeAnalysisSafeCastingExpr and
typeBound(getType(), _, _)
}
/** Gets the lower bound of the resulting type. */
int getLowerBound() { typeBound(getType(), result, _) }
/** Gets the upper bound of the resulting type. */
int getUpperBound() { typeBound(getType(), _, result) }
}
/** Holds if `e >= 1` as determined by sign analysis. */
private predicate strictlyPositiveIntegralExpr(Expr e) {
strictlyPositive(e) and e.getType() instanceof IntegralType
}
/** Holds if `e <= -1` as determined by sign analysis. */
private predicate strictlyNegativeIntegralExpr(Expr e) {
strictlyNegative(e) and e.getType() instanceof IntegralType
}
/**
* Holds if `e1 + delta` is a valid bound for `e2`.
* - `upper = true` : `e2 <= e1 + delta`
* - `upper = false` : `e2 >= e1 + delta`
*/
private predicate boundFlowStep(Expr e2, Expr e1, int delta, boolean upper) {
valueFlowStep(e2, e1, delta) and
(upper = true or upper = false)
or
e2.(RangeAnalysisSafeCastingExpr).getExpr() = e1 and
delta = 0 and
(upper = true or upper = false)
or
exists(Expr x |
e2.(AddExpr).hasOperands(e1, x)
or
exists(AssignAddExpr add | add = e2 |
add.getDest() = e1 and add.getRhs() = x
or
add.getDest() = x and add.getRhs() = e1
)
|
// `x instanceof ConstantIntegerExpr` is covered by valueFlowStep
not x instanceof ConstantIntegerExpr and
not e1 instanceof ConstantIntegerExpr and
if strictlyPositiveIntegralExpr(x)
then upper = false and delta = 1
else
if positive(x)
then upper = false and delta = 0
else
if strictlyNegativeIntegralExpr(x)
then upper = true and delta = -1
else
if negative(x)
then upper = true and delta = 0
else none()
)
or
exists(Expr x |
exists(SubExpr sub |
e2 = sub and
sub.getLeftOperand() = e1 and
sub.getRightOperand() = x
)
or
exists(AssignSubExpr sub |
e2 = sub and
sub.getDest() = e1 and
sub.getRhs() = x
)
|
// `x instanceof ConstantIntegerExpr` is covered by valueFlowStep
not x instanceof ConstantIntegerExpr and
if strictlyPositiveIntegralExpr(x)
then upper = true and delta = -1
else
if positive(x)
then upper = true and delta = 0
else
if strictlyNegativeIntegralExpr(x)
then upper = false and delta = 1
else
if negative(x)
then upper = false and delta = 0
else none()
)
or
e2.(RemExpr).getRightOperand() = e1 and positive(e1) and delta = -1 and upper = true
or
e2.(RemExpr).getLeftOperand() = e1 and positive(e1) and delta = 0 and upper = true
or
e2.(AssignRemExpr).getRhs() = e1 and positive(e1) and delta = -1 and upper = true
or
e2.(AssignRemExpr).getDest() = e1 and positive(e1) and delta = 0 and upper = true
or
e2.(AndBitwiseExpr).getAnOperand() = e1 and positive(e1) and delta = 0 and upper = true
or
e2.(AssignAndExpr).getSource() = e1 and positive(e1) and delta = 0 and upper = true
or
e2.(OrBitwiseExpr).getAnOperand() = e1 and positive(e2) and delta = 0 and upper = false
or
e2.(AssignOrExpr).getSource() = e1 and positive(e2) and delta = 0 and upper = false
or
exists(RandomDataSource rds |
e2 = rds.getOutput() and
(
e1 = rds.getUpperBoundExpr() and
delta = -1 and
upper = true
or
e1 = rds.getLowerBoundExpr() and
delta = 0 and
upper = false
)
)
or
exists(MethodAccess ma, Method m |
e2 = ma and
ma.getMethod() = m and
(
m.hasName("max") and upper = false
or
m.hasName("min") and upper = true
) and
m.getDeclaringType().hasQualifiedName("java.lang", "Math") and
e1 = ma.getAnArgument() and
delta = 0
)
}
/** Holds if `e2 = e1 * factor` and `factor > 0`. */
private predicate boundFlowStepMul(Expr e2, Expr e1, int factor) {
exists(ConstantIntegerExpr c, int k | k = c.getIntValue() and k > 0 |
e2.(MulExpr).hasOperands(e1, c) and factor = k
or
exists(AssignMulExpr e | e = e2 and e.getDest() = e1 and e.getRhs() = c and factor = k)
or
exists(AssignMulExpr e | e = e2 and e.getDest() = c and e.getRhs() = e1 and factor = k)
or
exists(LShiftExpr e |
e = e2 and e.getLeftOperand() = e1 and e.getRightOperand() = c and factor = 2.pow(k)
)
or
exists(AssignLShiftExpr e |
e = e2 and e.getDest() = e1 and e.getRhs() = c and factor = 2.pow(k)
)
)
}
/**
* Holds if `e2 = e1 / factor` and `factor > 0`.
*
* This conflates division, right shift, and unsigned right shift and is
* therefore only valid for non-negative numbers.
*/
private predicate boundFlowStepDiv(Expr e2, Expr e1, int factor) {
exists(ConstantIntegerExpr c, int k | k = c.getIntValue() and k > 0 |
exists(DivExpr e |
e = e2 and e.getLeftOperand() = e1 and e.getRightOperand() = c and factor = k
)
or
exists(AssignDivExpr e | e = e2 and e.getDest() = e1 and e.getRhs() = c and factor = k)
or
exists(RShiftExpr e |
e = e2 and e.getLeftOperand() = e1 and e.getRightOperand() = c and factor = 2.pow(k)
)
or
exists(AssignRShiftExpr e |
e = e2 and e.getDest() = e1 and e.getRhs() = c and factor = 2.pow(k)
)
or
exists(URShiftExpr e |
e = e2 and e.getLeftOperand() = e1 and e.getRightOperand() = c and factor = 2.pow(k)
)
or
exists(AssignURShiftExpr e |
e = e2 and e.getDest() = e1 and e.getRhs() = c and factor = 2.pow(k)
)
)
}
/**
* Holds if `b + delta` is a valid bound for `v` at `pos`.
* - `upper = true` : `v <= b + delta`
* - `upper = false` : `v >= b + delta`
*/
private predicate boundedSsa(
SsaVariable v, SsaReadPosition pos, Bound b, int delta, boolean upper, boolean fromBackEdge,
int origdelta, Reason reason
) {
exists(Expr mid, int d1, int d2, Reason r1, Reason r2 |
boundFlowStepSsa(v, pos, mid, d1, upper, r1) and
bounded(mid, b, d2, upper, fromBackEdge, origdelta, r2) and
// upper = true: v <= mid + d1 <= b + d1 + d2 = b + delta
// upper = false: v >= mid + d1 >= b + d1 + d2 = b + delta
delta = d1 + d2 and
(if r1 instanceof NoReason then reason = r2 else reason = r1)
)
or
exists(int d, Reason r1, Reason r2 |
boundedSsa(v, pos, b, d, upper, fromBackEdge, origdelta, r2) or
boundedPhi(v, b, d, upper, fromBackEdge, origdelta, r2)
|
unequalIntegralSsa(v, pos, b, d, r1) and
(
upper = true and delta = d - 1
or
upper = false and delta = d + 1
) and
(
reason = r1
or
reason = r2 and not r2 instanceof NoReason
)
)
}
/**
* Holds if `v != b + delta` at `pos` and `v` is of integral type.
*/
private predicate unequalIntegralSsa(
SsaVariable v, SsaReadPosition pos, Bound b, int delta, Reason reason
) {
exists(Expr e, int d1, int d2 |
unequalFlowStepIntegralSsa(v, pos, e, d1, reason) and
bounded(e, b, d2, true, _, _, _) and
bounded(e, b, d2, false, _, _, _) and
delta = d2 + d1
)
}
/** Weakens a delta to lie in the range `[-1..1]`. */
bindingset[delta, upper]
private int weakenDelta(boolean upper, int delta) {
delta in [-1 .. 1] and result = delta
or
upper = true and result = -1 and delta < -1
or
upper = false and result = 1 and delta > 1
}
/**
* Holds if `b + delta` is a valid bound for `inp` when used as an input to
* `phi` along `edge`.
* - `upper = true` : `inp <= b + delta`
* - `upper = false` : `inp >= b + delta`
*/
private predicate boundedPhiInp(
SsaPhiNode phi, SsaVariable inp, SsaReadPositionPhiInputEdge edge, Bound b, int delta,
boolean upper, boolean fromBackEdge, int origdelta, Reason reason
) {
edge.phiInput(phi, inp) and
exists(int d, boolean fromBackEdge0 |
boundedSsa(inp, edge, b, d, upper, fromBackEdge0, origdelta, reason)
or
boundedPhi(inp, b, d, upper, fromBackEdge0, origdelta, reason)
or
b.(SsaBound).getSsa() = inp and
d = 0 and
(upper = true or upper = false) and
fromBackEdge0 = false and
origdelta = 0 and
reason = TNoReason()
|
if backEdge(phi, inp, edge)
then
fromBackEdge = true and
(
fromBackEdge0 = true and delta = weakenDelta(upper, d - origdelta) + origdelta
or
fromBackEdge0 = false and delta = d
)
else (
delta = d and fromBackEdge = fromBackEdge0
)
)
}
/** Holds if `boundedPhiInp(phi, inp, edge, b, delta, upper, _, _, _)`. */
pragma[noinline]
private predicate boundedPhiInp1(
SsaPhiNode phi, Bound b, boolean upper, SsaVariable inp, SsaReadPositionPhiInputEdge edge,
int delta
) {
boundedPhiInp(phi, inp, edge, b, delta, upper, _, _, _)
}
/**
* Holds if `phi` is a valid bound for `inp` when used as an input to `phi`
* along `edge`.
* - `upper = true` : `inp <= phi`
* - `upper = false` : `inp >= phi`
*/
private predicate selfBoundedPhiInp(
SsaPhiNode phi, SsaVariable inp, SsaReadPositionPhiInputEdge edge, boolean upper
) {
exists(int d, SsaBound phibound |
phibound.getSsa() = phi and
boundedPhiInp(phi, inp, edge, phibound, d, upper, _, _, _) and
(
upper = true and d <= 0
or
upper = false and d >= 0
)
)
}
/**
* Holds if `b + delta` is a valid bound for some input, `inp`, to `phi`, and
* thus a candidate bound for `phi`.
* - `upper = true` : `inp <= b + delta`
* - `upper = false` : `inp >= b + delta`
*/
pragma[noinline]
private predicate boundedPhiCand(
SsaPhiNode phi, boolean upper, Bound b, int delta, boolean fromBackEdge, int origdelta,
Reason reason
) {
exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge |
boundedPhiInp(phi, inp, edge, b, delta, upper, fromBackEdge, origdelta, reason)
)
}
/**
* Holds if the candidate bound `b + delta` for `phi` is valid for the phi input
* `inp` along `edge`.
*/
private predicate boundedPhiCandValidForEdge(
SsaPhiNode phi, Bound b, int delta, boolean upper, boolean fromBackEdge, int origdelta,
Reason reason, SsaVariable inp, SsaReadPositionPhiInputEdge edge
) {
boundedPhiCand(phi, upper, b, delta, fromBackEdge, origdelta, reason) and
(
exists(int d | boundedPhiInp1(phi, b, upper, inp, edge, d) | upper = true and d <= delta)
or
exists(int d | boundedPhiInp1(phi, b, upper, inp, edge, d) | upper = false and d >= delta)
or
selfBoundedPhiInp(phi, inp, edge, upper)
)
}
/**
* Holds if `b + delta` is a valid bound for `phi`'s `rix`th input edge.
* - `upper = true` : `phi <= b + delta`
* - `upper = false` : `phi >= b + delta`
*/
private predicate boundedPhiStep(
SsaPhiNode phi, Bound b, int delta, boolean upper, boolean fromBackEdge, int origdelta,
Reason reason, int rix
) {
exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge |
rankedPhiInput(phi, inp, edge, rix) and
boundedPhiCandValidForEdge(phi, b, delta, upper, fromBackEdge, origdelta, reason, inp, edge) and
(
rix = 1
or
boundedPhiStep(phi, b, delta, upper, fromBackEdge, origdelta, reason, rix - 1)
)
)
}
/**
* Holds if `b + delta` is a valid bound for `phi`.
* - `upper = true` : `phi <= b + delta`
* - `upper = false` : `phi >= b + delta`
*/
private predicate boundedPhi(
SsaPhiNode phi, Bound b, int delta, boolean upper, boolean fromBackEdge, int origdelta,
Reason reason
) {
exists(int r |
boundedPhiStep(phi, b, delta, upper, fromBackEdge, origdelta, reason, r) and
maxPhiInputRank(phi, r)
)
}
/**
* Holds if `e` has a lower bound of zero.
*/
private predicate lowerBoundZero(Expr e) {
e.(MethodAccess).getMethod() instanceof StringLengthMethod or
e.(MethodAccess).getMethod() instanceof CollectionSizeMethod or
e.(MethodAccess).getMethod() instanceof MapSizeMethod or
e.(FieldRead).getField() instanceof ArrayLengthField or
positive(e.(AndBitwiseExpr).getAnOperand())
}
/**
* Holds if `e` has an upper (for `upper = true`) or lower
* (for `upper = false`) bound of `b`.
*/
private predicate baseBound(Expr e, int b, boolean upper) {
lowerBoundZero(e) and b = 0 and upper = false
or
exists(Method read |
e.(MethodAccess).getMethod().overrides*(read) and
read.getDeclaringType().hasQualifiedName("java.io", "InputStream") and
read.hasName("read") and
read.getNumberOfParameters() = 0
|
upper = true and b = 255
or
upper = false and b = -1
)
}
/**
* Holds if the value being cast has an upper (for `upper = true`) or lower
* (for `upper = false`) bound within the bounds of the resulting type.
* For `upper = true` this means that the cast will not overflow and for
* `upper = false` this means that the cast will not underflow.
*/
private predicate safeNarrowingCast(NarrowingCastingExpr cast, boolean upper) {
exists(int bound | bounded(cast.getExpr(), any(ZeroBound zb), bound, upper, _, _, _) |
upper = true and bound <= cast.getUpperBound()
or
upper = false and bound >= cast.getLowerBound()
)
}
pragma[noinline]
private predicate boundedCastExpr(
NarrowingCastingExpr cast, Bound b, int delta, boolean upper, boolean fromBackEdge, int origdelta,
Reason reason
) {
bounded(cast.getExpr(), b, delta, upper, fromBackEdge, origdelta, reason)
}
/**
* Holds if `b + delta` is a valid bound for `e`.
* - `upper = true` : `e <= b + delta`
* - `upper = false` : `e >= b + delta`
*/
private predicate bounded(
Expr e, Bound b, int delta, boolean upper, boolean fromBackEdge, int origdelta, Reason reason
) {
e = b.getExpr(delta) and
(upper = true or upper = false) and
fromBackEdge = false and
origdelta = delta and
reason = TNoReason()
or
baseBound(e, delta, upper) and
b instanceof ZeroBound and
fromBackEdge = false and
origdelta = delta and
reason = TNoReason()
or
exists(SsaVariable v, SsaReadPositionBlock bb |
boundedSsa(v, bb, b, delta, upper, fromBackEdge, origdelta, reason) and
e = v.getAUse() and
bb.getBlock() = e.getBasicBlock()
)
or
exists(Expr mid, int d1, int d2 |
boundFlowStep(e, mid, d1, upper) and
// Constants have easy, base-case bounds, so let's not infer any recursive bounds.
not e instanceof ConstantIntegerExpr and
bounded(mid, b, d2, upper, fromBackEdge, origdelta, reason) and
// upper = true: e <= mid + d1 <= b + d1 + d2 = b + delta
// upper = false: e >= mid + d1 >= b + d1 + d2 = b + delta
delta = d1 + d2
)
or
exists(SsaPhiNode phi |
boundedPhi(phi, b, delta, upper, fromBackEdge, origdelta, reason) and
e = phi.getAUse()
)
or
exists(Expr mid, int factor, int d |
boundFlowStepMul(e, mid, factor) and
not e instanceof ConstantIntegerExpr and
bounded(mid, b, d, upper, fromBackEdge, origdelta, reason) and
b instanceof ZeroBound and
delta = d * factor
)
or
exists(Expr mid, int factor, int d |
boundFlowStepDiv(e, mid, factor) and
not e instanceof ConstantIntegerExpr and
bounded(mid, b, d, upper, fromBackEdge, origdelta, reason) and
b instanceof ZeroBound and
d >= 0 and
delta = d / factor
)
or
exists(NarrowingCastingExpr cast |
cast = e and
safeNarrowingCast(cast, upper.booleanNot()) and
boundedCastExpr(cast, b, delta, upper, fromBackEdge, origdelta, reason)
)
or
exists(
ConditionalExpr cond, int d1, int d2, boolean fbe1, boolean fbe2, int od1, int od2, Reason r1,
Reason r2
|
cond = e and
boundedConditionalExpr(cond, b, upper, true, d1, fbe1, od1, r1) and
boundedConditionalExpr(cond, b, upper, false, d2, fbe2, od2, r2) and
(
delta = d1 and fromBackEdge = fbe1 and origdelta = od1 and reason = r1
or
delta = d2 and fromBackEdge = fbe2 and origdelta = od2 and reason = r2
)
|
upper = true and delta = d1.maximum(d2)
or
upper = false and delta = d1.minimum(d2)
)
}
private predicate boundedConditionalExpr(
ConditionalExpr cond, Bound b, boolean upper, boolean branch, int delta, boolean fromBackEdge,
int origdelta, Reason reason
) {
bounded(cond.getBranchExpr(branch), b, delta, upper, fromBackEdge, origdelta, reason)
}