Files
codeql/java/ql/lib/semmle/code/java/dataflow/ModulusAnalysis.qll
Chris Smowton 579b57cf67 Range analysis: use ranked phi nodes
This borrows a technique (and the implementing code) off Modulus analysis.
2022-03-11 12:32:12 +00:00

282 lines
8.1 KiB
Plaintext

/**
* Provides inferences of the form: `e` equals `b + v` modulo `m` where `e` is
* an expression, `b` is a `Bound` (typically zero or the value of an SSA
* variable), and `v` is an integer in the range `[0 .. m-1]`.
*/
private import internal.rangeanalysis.ModulusAnalysisSpecific::Private
private import Bound
private import internal.rangeanalysis.SsaReadPositionCommon
/**
* Holds if `e + delta` equals `v` at `pos`.
*/
private predicate valueFlowStepSsa(SsaVariable v, SsaReadPosition pos, Expr e, int delta) {
ssaUpdateStep(v, e, delta) and pos.hasReadOfVar(v)
or
exists(Guard guard, boolean testIsTrue |
pos.hasReadOfVar(v) and
guard = eqFlowCond(v, e, delta, true, testIsTrue) and
guardDirectlyControlsSsaRead(guard, pos, testIsTrue)
)
}
/**
* Holds if `add` is the addition of `larg` and `rarg`, neither of which are
* `ConstantIntegerExpr`s.
*/
private predicate nonConstAddition(Expr add, Expr larg, Expr rarg) {
exists(AddExpr a | a = add |
larg = a.getLhs() and
rarg = a.getRhs()
) and
not larg instanceof ConstantIntegerExpr and
not rarg instanceof ConstantIntegerExpr
}
/**
* Holds if `sub` is the subtraction of `larg` and `rarg`, where `rarg` is not
* a `ConstantIntegerExpr`.
*/
private predicate nonConstSubtraction(Expr sub, Expr larg, Expr rarg) {
exists(SubExpr s | s = sub |
larg = s.getLhs() and
rarg = s.getRhs()
) and
not rarg instanceof ConstantIntegerExpr
}
/** Gets an expression that is the remainder modulo `mod` of `arg`. */
private Expr modExpr(Expr arg, int mod) {
exists(RemExpr rem |
result = rem and
arg = rem.getLeftOperand() and
rem.getRightOperand().(ConstantIntegerExpr).getIntValue() = mod and
mod >= 2
)
or
exists(ConstantIntegerExpr c |
mod = 2.pow([1 .. 30]) and
c.getIntValue() = mod - 1 and
result.(BitwiseAndExpr).hasOperands(arg, c)
)
}
/**
* Gets a guard that tests whether `v` is congruent with `val` modulo `mod` on
* its `testIsTrue` branch.
*/
private Guard moduloCheck(SsaVariable v, int val, int mod, boolean testIsTrue) {
exists(Expr rem, ConstantIntegerExpr c, int r, boolean polarity |
result.isEquality(rem, c, polarity) and
c.getIntValue() = r and
rem = modExpr(v.getAUse(), mod) and
(
testIsTrue = polarity and val = r
or
testIsTrue = polarity.booleanNot() and
mod = 2 and
val = 1 - r and
(r = 0 or r = 1)
)
)
}
/**
* Holds if a guard ensures that `v` at `pos` is congruent with `val` modulo `mod`.
*/
private predicate moduloGuardedRead(SsaVariable v, SsaReadPosition pos, int val, int mod) {
exists(Guard guard, boolean testIsTrue |
pos.hasReadOfVar(v) and
guard = moduloCheck(v, val, mod, testIsTrue) and
guardControlsSsaRead(guard, pos, testIsTrue)
)
}
/** Holds if `factor` is a power of 2 that divides `mask`. */
bindingset[mask]
private predicate andmaskFactor(int mask, int factor) {
mask % factor = 0 and
factor = 2.pow([1 .. 30])
}
/** Holds if `e` is evenly divisible by `factor`. */
private predicate evenlyDivisibleExpr(Expr e, int factor) {
exists(ConstantIntegerExpr c, int k | k = c.getIntValue() |
e.(MulExpr).getAnOperand() = c and factor = k.abs() and factor >= 2
or
e.(LShiftExpr).getRhs() = c and factor = 2.pow(k) and k > 0
or
e.(BitwiseAndExpr).getAnOperand() = c and factor = max(int f | andmaskFactor(k, f))
)
}
/**
* Gets the remainder of `val` modulo `mod`.
*
* For `mod = 0` the result equals `val` and for `mod > 1` the result is within
* the range `[0 .. mod-1]`.
*/
bindingset[val, mod]
private int remainder(int val, int mod) {
mod = 0 and result = val
or
mod > 1 and result = ((val % mod) + mod) % mod
}
/**
* Holds if `inp` is an input to `phi` and equals `phi` modulo `mod` along `edge`.
*/
private predicate phiSelfModulus(
SsaPhiNode phi, SsaVariable inp, SsaReadPositionPhiInputEdge edge, int mod
) {
exists(SsaBound phibound, int v, int m |
edge.phiInput(phi, inp) and
phibound.getSsa() = phi and
ssaModulus(inp, edge, phibound, v, m) and
mod = m.gcd(v) and
mod != 1
)
}
/**
* Holds if `b + val` modulo `mod` is a candidate congruence class for `phi`.
*/
private predicate phiModulusInit(SsaPhiNode phi, Bound b, int val, int mod) {
exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge |
edge.phiInput(phi, inp) and
ssaModulus(inp, edge, b, val, mod)
)
}
/**
* Holds if all inputs to `phi` numbered `1` to `rix` are equal to `b + val` modulo `mod`.
*/
private predicate phiModulusRankStep(SsaPhiNode phi, Bound b, int val, int mod, int rix) {
rix = 0 and
phiModulusInit(phi, b, val, mod)
or
exists(SsaVariable inp, SsaReadPositionPhiInputEdge edge, int v1, int m1 |
mod != 1 and
val = remainder(v1, mod)
|
exists(int v2, int m2 |
rankedPhiInput(phi, inp, edge, rix) and
phiModulusRankStep(phi, b, v1, m1, rix - 1) and
ssaModulus(inp, edge, b, v2, m2) and
mod = m1.gcd(m2).gcd(v1 - v2)
)
or
exists(int m2 |
rankedPhiInput(phi, inp, edge, rix) and
phiModulusRankStep(phi, b, v1, m1, rix - 1) and
phiSelfModulus(phi, inp, edge, m2) and
mod = m1.gcd(m2)
)
)
}
/**
* Holds if `phi` is equal to `b + val` modulo `mod`.
*/
private predicate phiModulus(SsaPhiNode phi, Bound b, int val, int mod) {
exists(int r |
maxPhiInputRank(phi, r) and
phiModulusRankStep(phi, b, val, mod, r)
)
}
/**
* Holds if `v` at `pos` is equal to `b + val` modulo `mod`.
*/
private predicate ssaModulus(SsaVariable v, SsaReadPosition pos, Bound b, int val, int mod) {
phiModulus(v, b, val, mod) and pos.hasReadOfVar(v)
or
b.(SsaBound).getSsa() = v and pos.hasReadOfVar(v) and val = 0 and mod = 0
or
exists(Expr e, int val0, int delta |
exprModulus(e, b, val0, mod) and
valueFlowStepSsa(v, pos, e, delta) and
val = remainder(val0 + delta, mod)
)
or
moduloGuardedRead(v, pos, val, mod) and b instanceof ZeroBound
}
/**
* Holds if `e` is equal to `b + val` modulo `mod`.
*
* There are two cases for the modulus:
* - `mod = 0`: The equality `e = b + val` is an ordinary equality.
* - `mod > 1`: `val` lies within the range `[0 .. mod-1]`.
*/
cached
predicate exprModulus(Expr e, Bound b, int val, int mod) {
e = b.getExpr(val) and mod = 0
or
evenlyDivisibleExpr(e, mod) and val = 0 and b instanceof ZeroBound
or
exists(SsaVariable v, SsaReadPositionBlock bb |
ssaModulus(v, bb, b, val, mod) and
e = v.getAUse() and
getABasicBlockExpr(bb.getBlock()) = e
)
or
exists(Expr mid, int val0, int delta |
exprModulus(mid, b, val0, mod) and
valueFlowStep(e, mid, delta) and
val = remainder(val0 + delta, mod)
)
or
exists(ConditionalExpr cond, int v1, int v2, int m1, int m2 |
cond = e and
condExprBranchModulus(cond, true, b, v1, m1) and
condExprBranchModulus(cond, false, b, v2, m2) and
mod = m1.gcd(m2).gcd(v1 - v2) and
mod != 1 and
val = remainder(v1, mod)
)
or
exists(Bound b1, Bound b2, int v1, int v2, int m1, int m2 |
addModulus(e, true, b1, v1, m1) and
addModulus(e, false, b2, v2, m2) and
mod = m1.gcd(m2) and
mod != 1 and
val = remainder(v1 + v2, mod)
|
b = b1 and b2 instanceof ZeroBound
or
b = b2 and b1 instanceof ZeroBound
)
or
exists(int v1, int v2, int m1, int m2 |
subModulus(e, true, b, v1, m1) and
subModulus(e, false, any(ZeroBound zb), v2, m2) and
mod = m1.gcd(m2) and
mod != 1 and
val = remainder(v1 - v2, mod)
)
}
private predicate condExprBranchModulus(
ConditionalExpr cond, boolean branch, Bound b, int val, int mod
) {
exprModulus(cond.getBranchExpr(branch), b, val, mod)
}
private predicate addModulus(Expr add, boolean isLeft, Bound b, int val, int mod) {
exists(Expr larg, Expr rarg | nonConstAddition(add, larg, rarg) |
exprModulus(larg, b, val, mod) and isLeft = true
or
exprModulus(rarg, b, val, mod) and isLeft = false
)
}
private predicate subModulus(Expr sub, boolean isLeft, Bound b, int val, int mod) {
exists(Expr larg, Expr rarg | nonConstSubtraction(sub, larg, rarg) |
exprModulus(larg, b, val, mod) and isLeft = true
or
exprModulus(rarg, b, val, mod) and isLeft = false
)
}