Files
codeql/cpp/ql/test/library-tests/ir/range-analysis/test.cpp

159 lines
3.8 KiB
C++

#include "test_util.h"
int f1(int x, int y) {
if (x < 500) {
if (x > 400) {
range(x); // $ range=>=401 range=<=499
return x;
}
if (y - 2 == x && y > 300) { // $ overflow=-
range(x + y); // $ range=<=802 range=>=600
return x + y;
}
if (x != y + 1) { // $ overflow=+
range(x); // $ range=<=400
int sum = x + y; // $ overflow=+-
} else {
if (y > 300) {
range(x); // $ range=>=302 range=<=400 range="<=InitializeParameter: y+1" MISSING: range===y+1
range(y); // $ range=>=301 range=<=399 range="==InitializeParameter: x | Store: x-1"
int sum = x + y;
}
}
if (x > 500) {
range(x); // $ range=<=400 range=>=501
return x;
}
}
return 0;
}
int f2(int x, int y, int z) {
if (x < 500) {
if (x > 400) {
range(x); // $ range=>=401 range=<=499
return x;
}
if (y == x - 1 && y > 300 && y + 2 == z && z == 350) { // $ overflow=+ overflow=-
range(x); // $ range===349 range="==InitializeParameter: y+1" range="==InitializeParameter: z-1"
range(y); // $ range===348 range=">=InitializeParameter: x | Store: x-1" range="==InitializeParameter: z-2" MISSING: range===x-1
range(z); // $ range===350 range="<=InitializeParameter: y+2" MISSING: range===x+1 range===y+2
return x + y + z;
}
}
return 0;
}
void* f3_get(int n);
void f3() {
int n = 0;
while (f3_get(n)) n+=2;
for (int i = 0; i < n; i += 2) {
range(i); // $ range=>=0 range="<=Phi: call to f3_get-2"
}
}
int f4(int x) {
for (int i = 0; i <= 100; i++) {
range(i); // $ range=<=100 range=>=0
if(i == 100) {
range(i); // $ range===100
} else {
range(i); // $ range=<=99 range=>=0
}
}
}
// No interesting ranges to check here - this irreducible CFG caused an infinite loop due to back edge detection
void gotoLoop(bool b1, bool b2)
{
int j;
if (b1)
return;
if (!b2)
{
for (j = 0; j < 10; ++j)
{
goto main_decode_loop;
}
}
else
{
for (j = 0; j < 10; ++j)
{
int x;
main_decode_loop:
}
}
}
void test_sub(int x, int y, int n) {
if(x > 0 && x < 500) {
if(y > 0 && y < 10) {
range(x - y); // $ range=<=498 range=>=-8
}
if(n > 0 && n < 100) {
for (int i = 0; i < n; i++)
{
range(n - i); // $ range=">=Phi: i-97" range=<=99 range=>=-97
range(i - n); // $ range="<=Phi: i-1" range=">=Phi: i-99" range=<=97 range=>=-99
}
for (int i = n; i != 0; i--)
{
range(n - i); // $ SPURIOUS: overflow=+
range(i - n); // $ range=">=Phi: i-99"
}
}
}
}
void test_div(int x) {
if (3 <= x && x <= 7) {
range(x / 2); // $ range=>=1 range=<=3
range(x / 3); // $ range=>=1 range=<=2
range(x >> 2); // $ range=>=0 range=<=1
}
if (2 <= x && x <= 8) {
range(x / 2); // $ range=>=1 range=<=4
range(x / 3); // $ range=>=0 range=<=2
range(x >> 2); // $ range=>=0 range=<=2
}
}
struct X { int n; };
void read_argument(const X *);
// This test exists purely to ensure that modulus analysis terminates in the
// presence of inexact phi operands. The LoadInstruction on `while(x->n) { ... }`
// reads from a PhiInstruction with two input operands: an exact operand defined
// by the StoreInstruction generated by `x->n--` and an inexact operand coming
// from the WriteSideEffect generated by `read_argument(x)`. If we don't consider
// the inexact operand modulus analysis fails to terminate.
void nonterminating_without_operands_as_ssa(X *x) {
read_argument(x);
while (x->n) {
x->n--;
}
}
void test_with_irreduble_cfg(int i, int x) {
if (x < i) {
} else {
goto inLoop;
}
for(; i < x; i++) {
inLoop:
range(i); // $ range="<=InitializeParameter: x+0"
}
}