Files
codeql/cpp/ql/lib/semmle/code/cpp/dataflow/internal/DataFlowImplCommon.qll
2023-06-30 11:09:29 -07:00

1482 lines
46 KiB
Plaintext

private import DataFlowImplSpecific::Private
private import DataFlowImplSpecific::Public
import Cached
module DataFlowImplCommonPublic {
/** Provides `FlowState = string`. */
module FlowStateString {
/** A state value to track during data flow. */
class FlowState = string;
/**
* The default state, which is used when the state is unspecified for a source
* or a sink.
*/
class FlowStateEmpty extends FlowState {
FlowStateEmpty() { this = "" }
}
}
private newtype TFlowFeature =
TFeatureHasSourceCallContext() or
TFeatureHasSinkCallContext() or
TFeatureEqualSourceSinkCallContext()
/** A flow configuration feature for use in `Configuration::getAFeature()`. */
class FlowFeature extends TFlowFeature {
string toString() { none() }
}
/**
* A flow configuration feature that implies that sources have some existing
* call context.
*/
class FeatureHasSourceCallContext extends FlowFeature, TFeatureHasSourceCallContext {
override string toString() { result = "FeatureHasSourceCallContext" }
}
/**
* A flow configuration feature that implies that sinks have some existing
* call context.
*/
class FeatureHasSinkCallContext extends FlowFeature, TFeatureHasSinkCallContext {
override string toString() { result = "FeatureHasSinkCallContext" }
}
/**
* A flow configuration feature that implies that source-sink pairs have some
* shared existing call context.
*/
class FeatureEqualSourceSinkCallContext extends FlowFeature, TFeatureEqualSourceSinkCallContext {
override string toString() { result = "FeatureEqualSourceSinkCallContext" }
}
}
/**
* The cost limits for the `AccessPathFront` to `AccessPathApprox` expansion.
*
* `apLimit` bounds the acceptable fan-out, and `tupleLimit` bounds the
* estimated per-`AccessPathFront` tuple cost. Access paths exceeding both of
* these limits are represented with lower precision during pruning.
*/
predicate accessPathApproxCostLimits(int apLimit, int tupleLimit) {
apLimit = 10 and
tupleLimit = 10000
}
/**
* The cost limits for the `AccessPathApprox` to `AccessPath` expansion.
*
* `apLimit` bounds the acceptable fan-out, and `tupleLimit` bounds the
* estimated per-`AccessPathApprox` tuple cost. Access paths exceeding both of
* these limits are represented with lower precision.
*/
predicate accessPathCostLimits(int apLimit, int tupleLimit) {
apLimit = 5 and
tupleLimit = 1000
}
/**
* Holds if `arg` is an argument of `call` with an argument position that matches
* parameter position `ppos`.
*/
pragma[noinline]
predicate argumentPositionMatch(DataFlowCall call, ArgNode arg, ParameterPosition ppos) {
exists(ArgumentPosition apos |
arg.argumentOf(call, apos) and
parameterMatch(ppos, apos)
)
}
/**
* Provides a simple data-flow analysis for resolving lambda calls. The analysis
* currently excludes read-steps, store-steps, and flow-through.
*
* The analysis uses non-linear recursion: When computing a flow path in or out
* of a call, we use the results of the analysis recursively to resolve lambda
* calls. For this reason, we cannot reuse the code from `DataFlowImpl.qll` directly.
*/
private module LambdaFlow {
pragma[noinline]
private predicate viableParamNonLambda(DataFlowCall call, ParameterPosition ppos, ParamNode p) {
p.isParameterOf(viableCallable(call), ppos)
}
pragma[noinline]
private predicate viableParamLambda(DataFlowCall call, ParameterPosition ppos, ParamNode p) {
p.isParameterOf(viableCallableLambda(call, _), ppos)
}
private predicate viableParamArgNonLambda(DataFlowCall call, ParamNode p, ArgNode arg) {
exists(ParameterPosition ppos |
viableParamNonLambda(call, ppos, p) and
argumentPositionMatch(call, arg, ppos)
)
}
private predicate viableParamArgLambda(DataFlowCall call, ParamNode p, ArgNode arg) {
exists(ParameterPosition ppos |
viableParamLambda(call, ppos, p) and
argumentPositionMatch(call, arg, ppos)
)
}
private newtype TReturnPositionSimple =
TReturnPositionSimple0(DataFlowCallable c, ReturnKind kind) {
exists(ReturnNode ret |
c = getNodeEnclosingCallable(ret) and
kind = ret.getKind()
)
}
pragma[noinline]
private TReturnPositionSimple getReturnPositionSimple(ReturnNode ret, ReturnKind kind) {
result = TReturnPositionSimple0(getNodeEnclosingCallable(ret), kind)
}
pragma[nomagic]
private TReturnPositionSimple viableReturnPosNonLambda(DataFlowCall call, ReturnKind kind) {
result = TReturnPositionSimple0(viableCallable(call), kind)
}
pragma[nomagic]
private TReturnPositionSimple viableReturnPosLambda(DataFlowCall call, ReturnKind kind) {
result = TReturnPositionSimple0(viableCallableLambda(call, _), kind)
}
private predicate viableReturnPosOutNonLambda(
DataFlowCall call, TReturnPositionSimple pos, OutNode out
) {
exists(ReturnKind kind |
pos = viableReturnPosNonLambda(call, kind) and
out = getAnOutNode(call, kind)
)
}
pragma[nomagic]
private predicate viableReturnPosOutLambda(
DataFlowCall call, TReturnPositionSimple pos, OutNode out
) {
exists(ReturnKind kind |
pos = viableReturnPosLambda(call, kind) and
out = getAnOutNode(call, kind)
)
}
/**
* Holds if data can flow (inter-procedurally) from `node` (of type `t`) to
* the lambda call `lambdaCall`.
*
* The parameter `toReturn` indicates whether the path from `node` to
* `lambdaCall` goes through a return, and `toJump` whether the path goes
* through a jump step.
*
* The call context `lastCall` records the last call on the path from `node`
* to `lambdaCall`, if any. That is, `lastCall` is able to target the enclosing
* callable of `lambdaCall`.
*/
pragma[nomagic]
predicate revLambdaFlow(
DataFlowCall lambdaCall, LambdaCallKind kind, Node node, DataFlowType t, boolean toReturn,
boolean toJump, DataFlowCallOption lastCall
) {
revLambdaFlow0(lambdaCall, kind, node, t, toReturn, toJump, lastCall) and
not expectsContent(node, _) and
if castNode(node) or node instanceof ArgNode or node instanceof ReturnNode
then compatibleTypes(t, getNodeDataFlowType(node))
else any()
}
pragma[nomagic]
predicate revLambdaFlow0(
DataFlowCall lambdaCall, LambdaCallKind kind, Node node, DataFlowType t, boolean toReturn,
boolean toJump, DataFlowCallOption lastCall
) {
lambdaCall(lambdaCall, kind, node) and
t = getNodeDataFlowType(node) and
toReturn = false and
toJump = false and
lastCall = TDataFlowCallNone()
or
// local flow
exists(Node mid, DataFlowType t0 |
revLambdaFlow(lambdaCall, kind, mid, t0, toReturn, toJump, lastCall)
|
simpleLocalFlowStep(node, mid) and
t = t0
or
exists(boolean preservesValue |
additionalLambdaFlowStep(node, mid, preservesValue) and
getNodeEnclosingCallable(node) = getNodeEnclosingCallable(mid)
|
preservesValue = false and
t = getNodeDataFlowType(node)
or
preservesValue = true and
t = t0
)
)
or
// jump step
exists(Node mid, DataFlowType t0 |
revLambdaFlow(lambdaCall, kind, mid, t0, _, _, lastCall) and
toReturn = false and
toJump = true
|
jumpStepCached(node, mid) and
t = t0
or
exists(boolean preservesValue |
additionalLambdaFlowStep(node, mid, preservesValue) and
getNodeEnclosingCallable(node) != getNodeEnclosingCallable(mid)
|
preservesValue = false and
t = getNodeDataFlowType(node)
or
preservesValue = true and
t = t0
)
)
or
// flow into a callable
exists(ParamNode p, DataFlowCallOption lastCall0, DataFlowCall call |
revLambdaFlowIn(lambdaCall, kind, p, t, toJump, lastCall0) and
(
if lastCall0 = TDataFlowCallNone() and toJump = false
then lastCall = TDataFlowCallSome(call)
else lastCall = lastCall0
) and
toReturn = false
|
viableParamArgNonLambda(call, p, node)
or
viableParamArgLambda(call, p, node) // non-linear recursion
)
or
// flow out of a callable
exists(TReturnPositionSimple pos |
revLambdaFlowOut(lambdaCall, kind, pos, t, toJump, lastCall) and
getReturnPositionSimple(node, node.(ReturnNode).getKind()) = pos and
toReturn = true
)
}
pragma[nomagic]
predicate revLambdaFlowOutLambdaCall(
DataFlowCall lambdaCall, LambdaCallKind kind, OutNode out, DataFlowType t, boolean toJump,
DataFlowCall call, DataFlowCallOption lastCall
) {
revLambdaFlow(lambdaCall, kind, out, t, _, toJump, lastCall) and
exists(ReturnKindExt rk |
out = rk.getAnOutNode(call) and
lambdaCall(call, _, _)
)
}
pragma[nomagic]
predicate revLambdaFlowOut(
DataFlowCall lambdaCall, LambdaCallKind kind, TReturnPositionSimple pos, DataFlowType t,
boolean toJump, DataFlowCallOption lastCall
) {
exists(DataFlowCall call, OutNode out |
revLambdaFlow(lambdaCall, kind, out, t, _, toJump, lastCall) and
viableReturnPosOutNonLambda(call, pos, out)
or
// non-linear recursion
revLambdaFlowOutLambdaCall(lambdaCall, kind, out, t, toJump, call, lastCall) and
viableReturnPosOutLambda(call, pos, out)
)
}
pragma[nomagic]
predicate revLambdaFlowIn(
DataFlowCall lambdaCall, LambdaCallKind kind, ParamNode p, DataFlowType t, boolean toJump,
DataFlowCallOption lastCall
) {
revLambdaFlow(lambdaCall, kind, p, t, false, toJump, lastCall)
}
}
private DataFlowCallable viableCallableExt(DataFlowCall call) {
result = viableCallable(call)
or
result = viableCallableLambda(call, _)
}
cached
private module Cached {
/**
* If needed, call this predicate from `DataFlowImplSpecific.qll` in order to
* force a stage-dependency on the `DataFlowImplCommon.qll` stage and thereby
* collapsing the two stages.
*/
cached
predicate forceCachingInSameStage() { any() }
cached
predicate nodeEnclosingCallable(Node n, DataFlowCallable c) { c = nodeGetEnclosingCallable(n) }
cached
predicate callEnclosingCallable(DataFlowCall call, DataFlowCallable c) {
c = call.getEnclosingCallable()
}
cached
predicate nodeDataFlowType(Node n, DataFlowType t) { t = getNodeType(n) }
cached
predicate jumpStepCached(Node node1, Node node2) { jumpStep(node1, node2) }
cached
predicate clearsContentCached(Node n, ContentSet c) { clearsContent(n, c) }
cached
predicate expectsContentCached(Node n, ContentSet c) { expectsContent(n, c) }
cached
predicate isUnreachableInCallCached(Node n, DataFlowCall call) { isUnreachableInCall(n, call) }
cached
predicate outNodeExt(Node n) {
n instanceof OutNode
or
n.(PostUpdateNode).getPreUpdateNode() instanceof ArgNode
}
cached
predicate hiddenNode(Node n) { nodeIsHidden(n) }
cached
OutNodeExt getAnOutNodeExt(DataFlowCall call, ReturnKindExt k) {
result = getAnOutNode(call, k.(ValueReturnKind).getKind())
or
exists(ArgNode arg |
result.(PostUpdateNode).getPreUpdateNode() = arg and
arg.argumentOf(call, k.(ParamUpdateReturnKind).getAMatchingArgumentPosition())
)
}
cached
predicate returnNodeExt(Node n, ReturnKindExt k) {
k = TValueReturn(n.(ReturnNode).getKind())
or
exists(ParamNode p, ParameterPosition pos |
parameterValueFlowsToPreUpdate(p, n) and
p.isParameterOf(_, pos) and
k = TParamUpdate(pos)
)
}
cached
predicate castNode(Node n) { n instanceof CastNode }
cached
predicate castingNode(Node n) {
castNode(n) or
n instanceof ParamNode or
n instanceof OutNodeExt or
// For reads, `x.f`, we want to check that the tracked type after the read (which
// is obtained by popping the head of the access path stack) is compatible with
// the type of `x.f`.
readSet(_, _, n)
}
cached
predicate parameterNode(Node p, DataFlowCallable c, ParameterPosition pos) {
isParameterNode(p, c, pos)
}
cached
predicate argumentNode(Node n, DataFlowCall call, ArgumentPosition pos) {
isArgumentNode(n, call, pos)
}
/**
* Gets a viable target for the lambda call `call`.
*
* `lastCall` records the call required to reach `call` in order for the result
* to be a viable target, if any.
*/
cached
DataFlowCallable viableCallableLambda(DataFlowCall call, DataFlowCallOption lastCall) {
exists(Node creation, LambdaCallKind kind |
LambdaFlow::revLambdaFlow(call, kind, creation, _, _, _, lastCall) and
lambdaCreation(creation, kind, result)
)
}
/**
* Holds if `p` is the parameter of a viable dispatch target of `call`,
* and `p` has position `ppos`.
*/
pragma[nomagic]
private predicate viableParam(DataFlowCall call, ParameterPosition ppos, ParamNode p) {
p.isParameterOf(viableCallableExt(call), ppos)
}
/**
* Holds if `arg` is a possible argument to `p` in `call`, taking virtual
* dispatch into account.
*/
cached
predicate viableParamArg(DataFlowCall call, ParamNode p, ArgNode arg) {
exists(ParameterPosition ppos |
viableParam(call, ppos, p) and
argumentPositionMatch(call, arg, ppos) and
compatibleTypes(getNodeDataFlowType(arg), getNodeDataFlowType(p)) and
golangSpecificParamArgFilter(call, p, arg)
)
}
pragma[nomagic]
private ReturnPosition viableReturnPos(DataFlowCall call, ReturnKindExt kind) {
viableCallableExt(call) = result.getCallable() and
kind = result.getKind()
}
/**
* Holds if a value at return position `pos` can be returned to `out` via `call`,
* taking virtual dispatch into account.
*/
cached
predicate viableReturnPosOut(DataFlowCall call, ReturnPosition pos, Node out) {
exists(ReturnKindExt kind |
pos = viableReturnPos(call, kind) and
out = kind.getAnOutNode(call)
)
}
/** Provides predicates for calculating flow-through summaries. */
private module FlowThrough {
/**
* The first flow-through approximation:
*
* - Input access paths are abstracted with a Boolean parameter
* that indicates (non-)emptiness.
*/
private module Cand {
/**
* Holds if `p` can flow to `node` in the same callable using only
* value-preserving steps.
*
* `read` indicates whether it is contents of `p` that can flow to `node`.
*/
pragma[nomagic]
private predicate parameterValueFlowCand(ParamNode p, Node node, boolean read) {
p = node and
read = false
or
// local flow
exists(Node mid |
parameterValueFlowCand(p, mid, read) and
simpleLocalFlowStep(mid, node)
)
or
// read
exists(Node mid |
parameterValueFlowCand(p, mid, false) and
readSet(mid, _, node) and
read = true
)
or
// flow through: no prior read
exists(ArgNode arg |
parameterValueFlowArgCand(p, arg, false) and
argumentValueFlowsThroughCand(arg, node, read)
)
or
// flow through: no read inside method
exists(ArgNode arg |
parameterValueFlowArgCand(p, arg, read) and
argumentValueFlowsThroughCand(arg, node, false)
)
}
pragma[nomagic]
private predicate parameterValueFlowArgCand(ParamNode p, ArgNode arg, boolean read) {
parameterValueFlowCand(p, arg, read)
}
pragma[nomagic]
predicate parameterValueFlowsToPreUpdateCand(ParamNode p, PostUpdateNode n) {
parameterValueFlowCand(p, n.getPreUpdateNode(), false)
}
/**
* Holds if `p` can flow to a return node of kind `kind` in the same
* callable using only value-preserving steps, not taking call contexts
* into account.
*
* `read` indicates whether it is contents of `p` that can flow to the return
* node.
*/
predicate parameterValueFlowReturnCand(ParamNode p, ReturnKind kind, boolean read) {
exists(ReturnNode ret |
parameterValueFlowCand(p, ret, read) and
kind = ret.getKind()
)
}
pragma[nomagic]
private predicate argumentValueFlowsThroughCand0(
DataFlowCall call, ArgNode arg, ReturnKind kind, boolean read
) {
exists(ParamNode param | viableParamArg(call, param, arg) |
parameterValueFlowReturnCand(param, kind, read)
)
}
/**
* Holds if `arg` flows to `out` through a call using only value-preserving steps,
* not taking call contexts into account.
*
* `read` indicates whether it is contents of `arg` that can flow to `out`.
*/
predicate argumentValueFlowsThroughCand(ArgNode arg, Node out, boolean read) {
exists(DataFlowCall call, ReturnKind kind |
argumentValueFlowsThroughCand0(call, arg, kind, read) and
out = getAnOutNode(call, kind)
)
}
predicate cand(ParamNode p, Node n) {
parameterValueFlowCand(p, n, _) and
(
parameterValueFlowReturnCand(p, _, _)
or
parameterValueFlowsToPreUpdateCand(p, _)
)
}
}
/**
* The final flow-through calculation:
*
* - Calculated flow is either value-preserving (`read = TReadStepTypesNone()`)
* or summarized as a single read step with before and after types recorded
* in the `ReadStepTypesOption` parameter.
* - Types are checked using the `compatibleTypes()` relation.
*/
private module Final {
/**
* Holds if `p` can flow to `node` in the same callable using only
* value-preserving steps and possibly a single read step, not taking
* call contexts into account.
*
* If a read step was taken, then `read` captures the `Content`, the
* container type, and the content type.
*/
predicate parameterValueFlow(ParamNode p, Node node, ReadStepTypesOption read) {
parameterValueFlow0(p, node, read) and
if node instanceof CastingNode
then
// normal flow through
read = TReadStepTypesNone() and
compatibleTypes(getNodeDataFlowType(p), getNodeDataFlowType(node))
or
// getter
compatibleTypes(read.getContentType(), getNodeDataFlowType(node))
else any()
}
pragma[nomagic]
private predicate parameterValueFlow0(ParamNode p, Node node, ReadStepTypesOption read) {
p = node and
Cand::cand(p, _) and
read = TReadStepTypesNone()
or
// local flow
exists(Node mid |
parameterValueFlow(p, mid, read) and
simpleLocalFlowStep(mid, node)
)
or
// read
exists(Node mid |
parameterValueFlow(p, mid, TReadStepTypesNone()) and
readStepWithTypes(mid, read.getContainerType(), read.getContent(), node,
read.getContentType()) and
Cand::parameterValueFlowReturnCand(p, _, true) and
compatibleTypes(getNodeDataFlowType(p), read.getContainerType())
)
or
parameterValueFlow0_0(TReadStepTypesNone(), p, node, read)
}
pragma[nomagic]
private predicate parameterValueFlow0_0(
ReadStepTypesOption mustBeNone, ParamNode p, Node node, ReadStepTypesOption read
) {
// flow through: no prior read
exists(ArgNode arg |
parameterValueFlowArg(p, arg, mustBeNone) and
argumentValueFlowsThrough(arg, read, node)
)
or
// flow through: no read inside method
exists(ArgNode arg |
parameterValueFlowArg(p, arg, read) and
argumentValueFlowsThrough(arg, mustBeNone, node)
)
}
pragma[nomagic]
private predicate parameterValueFlowArg(ParamNode p, ArgNode arg, ReadStepTypesOption read) {
parameterValueFlow(p, arg, read) and
Cand::argumentValueFlowsThroughCand(arg, _, _)
}
pragma[nomagic]
private predicate argumentValueFlowsThrough0(
DataFlowCall call, ArgNode arg, ReturnKind kind, ReadStepTypesOption read
) {
exists(ParamNode param | viableParamArg(call, param, arg) |
parameterValueFlowReturn(param, kind, read)
)
}
/**
* Holds if `arg` flows to `out` through a call using only
* value-preserving steps and possibly a single read step, not taking
* call contexts into account.
*
* If a read step was taken, then `read` captures the `Content`, the
* container type, and the content type.
*/
pragma[nomagic]
predicate argumentValueFlowsThrough(ArgNode arg, ReadStepTypesOption read, Node out) {
exists(DataFlowCall call, ReturnKind kind |
argumentValueFlowsThrough0(call, arg, kind, read) and
out = getAnOutNode(call, kind)
|
// normal flow through
read = TReadStepTypesNone() and
compatibleTypes(getNodeDataFlowType(arg), getNodeDataFlowType(out))
or
// getter
compatibleTypes(getNodeDataFlowType(arg), read.getContainerType()) and
compatibleTypes(read.getContentType(), getNodeDataFlowType(out))
)
}
/**
* Holds if `arg` flows to `out` through a call using only
* value-preserving steps and a single read step, not taking call
* contexts into account, thus representing a getter-step.
*
* This predicate is exposed for testing only.
*/
predicate getterStep(ArgNode arg, ContentSet c, Node out) {
argumentValueFlowsThrough(arg, TReadStepTypesSome(_, c, _), out)
}
/**
* Holds if `p` can flow to a return node of kind `kind` in the same
* callable using only value-preserving steps and possibly a single read
* step.
*
* If a read step was taken, then `read` captures the `Content`, the
* container type, and the content type.
*/
private predicate parameterValueFlowReturn(
ParamNode p, ReturnKind kind, ReadStepTypesOption read
) {
exists(ReturnNode ret |
parameterValueFlow(p, ret, read) and
kind = ret.getKind()
)
}
}
import Final
}
import FlowThrough
cached
private module DispatchWithCallContext {
/**
* Holds if the set of viable implementations that can be called by `call`
* might be improved by knowing the call context.
*/
pragma[nomagic]
private predicate mayBenefitFromCallContextExt(DataFlowCall call, DataFlowCallable callable) {
mayBenefitFromCallContext(call, callable)
or
callEnclosingCallable(call, callable) and
exists(viableCallableLambda(call, TDataFlowCallSome(_)))
}
/**
* Gets a viable dispatch target of `call` in the context `ctx`. This is
* restricted to those `call`s for which a context might make a difference.
*/
cached
DataFlowCallable viableImplInCallContextExt(DataFlowCall call, DataFlowCall ctx) {
result = viableImplInCallContext(call, ctx) and
result = viableCallable(call)
or
result = viableCallableLambda(call, TDataFlowCallSome(ctx))
or
exists(DataFlowCallable enclosing |
mayBenefitFromCallContextExt(call, enclosing) and
enclosing = viableCallableExt(ctx) and
result = viableCallableLambda(call, TDataFlowCallNone())
)
}
/**
* Holds if the call context `ctx` reduces the set of viable run-time
* dispatch targets of call `call` in `c`.
*/
cached
predicate reducedViableImplInCallContext(DataFlowCall call, DataFlowCallable c, DataFlowCall ctx) {
exists(int tgts, int ctxtgts |
mayBenefitFromCallContextExt(call, c) and
c = viableCallableExt(ctx) and
ctxtgts = count(viableImplInCallContextExt(call, ctx)) and
tgts = strictcount(viableCallableExt(call)) and
ctxtgts < tgts
)
}
/**
* Gets a viable run-time dispatch target for the call `call` in the
* context `ctx`. This is restricted to those calls for which a context
* makes a difference.
*/
cached
DataFlowCallable prunedViableImplInCallContext(DataFlowCall call, DataFlowCall ctx) {
result = viableImplInCallContextExt(call, ctx) and
reducedViableImplInCallContext(call, _, ctx)
}
/**
* Holds if flow returning from callable `c` to call `call` might return
* further and if this path restricts the set of call sites that can be
* returned to.
*/
cached
predicate reducedViableImplInReturn(DataFlowCallable c, DataFlowCall call) {
exists(int tgts, int ctxtgts |
mayBenefitFromCallContextExt(call, _) and
c = viableCallableExt(call) and
ctxtgts = count(DataFlowCall ctx | c = viableImplInCallContextExt(call, ctx)) and
tgts = strictcount(DataFlowCall ctx | callEnclosingCallable(call, viableCallableExt(ctx))) and
ctxtgts < tgts
)
}
/**
* Gets a viable run-time dispatch target for the call `call` in the
* context `ctx`. This is restricted to those calls and results for which
* the return flow from the result to `call` restricts the possible context
* `ctx`.
*/
cached
DataFlowCallable prunedViableImplInCallContextReverse(DataFlowCall call, DataFlowCall ctx) {
result = viableImplInCallContextExt(call, ctx) and
reducedViableImplInReturn(result, call)
}
}
import DispatchWithCallContext
/**
* Holds if `p` can flow to the pre-update node associated with post-update
* node `n`, in the same callable, using only value-preserving steps.
*/
private predicate parameterValueFlowsToPreUpdate(ParamNode p, PostUpdateNode n) {
parameterValueFlow(p, n.getPreUpdateNode(), TReadStepTypesNone())
}
cached
predicate readSet(Node node1, ContentSet c, Node node2) { readStep(node1, c, node2) }
cached
predicate storeSet(
Node node1, ContentSet c, Node node2, DataFlowType contentType, DataFlowType containerType
) {
storeStep(node1, c, node2) and
contentType = getNodeDataFlowType(node1) and
containerType = getNodeDataFlowType(node2)
or
exists(Node n1, Node n2 |
n1 = node1.(PostUpdateNode).getPreUpdateNode() and
n2 = node2.(PostUpdateNode).getPreUpdateNode()
|
argumentValueFlowsThrough(n2, TReadStepTypesSome(containerType, c, contentType), n1)
or
readSet(n2, c, n1) and
contentType = getNodeDataFlowType(n1) and
containerType = getNodeDataFlowType(n2)
)
}
/**
* Holds if data can flow from `node1` to `node2` via a direct assignment to
* `c`.
*
* This includes reverse steps through reads when the result of the read has
* been stored into, in order to handle cases like `x.f1.f2 = y`.
*/
cached
predicate store(
Node node1, Content c, Node node2, DataFlowType contentType, DataFlowType containerType
) {
exists(ContentSet cs |
c = cs.getAStoreContent() and storeSet(node1, cs, node2, contentType, containerType)
)
}
/**
* Holds if data can flow from `fromNode` to `toNode` because they are the post-update
* nodes of some function output and input respectively, where the output and input
* are aliases. A typical example is a function returning `this`, implementing a fluent
* interface.
*/
private predicate reverseStepThroughInputOutputAlias(
PostUpdateNode fromNode, PostUpdateNode toNode
) {
exists(Node fromPre, Node toPre |
fromPre = fromNode.getPreUpdateNode() and
toPre = toNode.getPreUpdateNode()
|
exists(DataFlowCall c |
// Does the language-specific simpleLocalFlowStep already model flow
// from function input to output?
fromPre = getAnOutNode(c, _) and
toPre.(ArgNode).argumentOf(c, _) and
simpleLocalFlowStep(toPre.(ArgNode), fromPre)
)
or
argumentValueFlowsThrough(toPre, TReadStepTypesNone(), fromPre)
)
}
cached
predicate simpleLocalFlowStepExt(Node node1, Node node2) {
simpleLocalFlowStep(node1, node2) or
reverseStepThroughInputOutputAlias(node1, node2)
}
/**
* Holds if the call context `call` improves virtual dispatch in `callable`.
*/
cached
predicate recordDataFlowCallSiteDispatch(DataFlowCall call, DataFlowCallable callable) {
reducedViableImplInCallContext(_, callable, call)
}
/**
* Holds if the call context `call` allows us to prune unreachable nodes in `callable`.
*/
cached
predicate recordDataFlowCallSiteUnreachable(DataFlowCall call, DataFlowCallable callable) {
exists(Node n | getNodeEnclosingCallable(n) = callable | isUnreachableInCallCached(n, call))
}
cached
predicate allowParameterReturnInSelfCached(ParamNode p) { allowParameterReturnInSelf(p) }
cached
newtype TCallContext =
TAnyCallContext() or
TSpecificCall(DataFlowCall call) { recordDataFlowCallSite(call, _) } or
TSomeCall() or
TReturn(DataFlowCallable c, DataFlowCall call) { reducedViableImplInReturn(c, call) }
cached
newtype TReturnPosition =
TReturnPosition0(DataFlowCallable c, ReturnKindExt kind) {
exists(ReturnNodeExt ret |
c = returnNodeGetEnclosingCallable(ret) and
kind = ret.getKind()
)
}
cached
newtype TLocalFlowCallContext =
TAnyLocalCall() or
TSpecificLocalCall(DataFlowCall call) { isUnreachableInCallCached(_, call) }
cached
newtype TReturnKindExt =
TValueReturn(ReturnKind kind) or
TParamUpdate(ParameterPosition pos) { exists(ParamNode p | p.isParameterOf(_, pos)) }
cached
newtype TBooleanOption =
TBooleanNone() or
TBooleanSome(boolean b) { b = true or b = false }
cached
newtype TDataFlowCallOption =
TDataFlowCallNone() or
TDataFlowCallSome(DataFlowCall call)
cached
newtype TParamNodeOption =
TParamNodeNone() or
TParamNodeSome(ParamNode p)
cached
newtype TReturnCtx =
TReturnCtxNone() or
TReturnCtxNoFlowThrough() or
TReturnCtxMaybeFlowThrough(ReturnPosition pos)
cached
newtype TAccessPathFront =
TFrontNil() or
TFrontHead(Content c)
cached
newtype TApproxAccessPathFront =
TApproxFrontNil() or
TApproxFrontHead(ContentApprox c)
cached
newtype TAccessPathFrontOption =
TAccessPathFrontNone() or
TAccessPathFrontSome(AccessPathFront apf)
cached
newtype TApproxAccessPathFrontOption =
TApproxAccessPathFrontNone() or
TApproxAccessPathFrontSome(ApproxAccessPathFront apf)
}
/**
* Holds if the call context `call` either improves virtual dispatch in
* `callable` or if it allows us to prune unreachable nodes in `callable`.
*/
predicate recordDataFlowCallSite(DataFlowCall call, DataFlowCallable callable) {
recordDataFlowCallSiteDispatch(call, callable) or
recordDataFlowCallSiteUnreachable(call, callable)
}
/**
* A `Node` at which a cast can occur such that the type should be checked.
*/
class CastingNode instanceof Node {
CastingNode() { castingNode(this) }
string toString() { result = super.toString() }
predicate hasLocationInfo(
string filepath, int startline, int startcolumn, int endline, int endcolumn
) {
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
}
}
private predicate readStepWithTypes(
Node n1, DataFlowType container, ContentSet c, Node n2, DataFlowType content
) {
readSet(n1, c, n2) and
container = getNodeDataFlowType(n1) and
content = getNodeDataFlowType(n2)
}
private newtype TReadStepTypesOption =
TReadStepTypesNone() or
TReadStepTypesSome(DataFlowType container, ContentSet c, DataFlowType content) {
readStepWithTypes(_, container, c, _, content)
}
private class ReadStepTypesOption extends TReadStepTypesOption {
predicate isSome() { this instanceof TReadStepTypesSome }
DataFlowType getContainerType() { this = TReadStepTypesSome(result, _, _) }
ContentSet getContent() { this = TReadStepTypesSome(_, result, _) }
DataFlowType getContentType() { this = TReadStepTypesSome(_, _, result) }
string toString() { if this.isSome() then result = "Some(..)" else result = "None()" }
}
/**
* A call context to restrict the targets of virtual dispatch, prune local flow,
* and match the call sites of flow into a method with flow out of a method.
*
* There are four cases:
* - `TAnyCallContext()` : No restrictions on method flow.
* - `TSpecificCall(DataFlowCall call)` : Flow entered through the
* given `call`. This call improves the set of viable
* dispatch targets for at least one method call in the current callable
* or helps prune unreachable nodes in the current callable.
* - `TSomeCall()` : Flow entered through a parameter. The
* originating call does not improve the set of dispatch targets for any
* method call in the current callable and was therefore not recorded.
* - `TReturn(Callable c, DataFlowCall call)` : Flow reached `call` from `c` and
* this dispatch target of `call` implies a reduced set of dispatch origins
* to which data may flow if it should reach a `return` statement.
*/
abstract class CallContext extends TCallContext {
abstract string toString();
/** Holds if this call context is relevant for `callable`. */
abstract predicate relevantFor(DataFlowCallable callable);
}
abstract class CallContextNoCall extends CallContext { }
class CallContextAny extends CallContextNoCall, TAnyCallContext {
override string toString() { result = "CcAny" }
override predicate relevantFor(DataFlowCallable callable) { any() }
}
abstract class CallContextCall extends CallContext {
/** Holds if this call context may be `call`. */
bindingset[call]
abstract predicate matchesCall(DataFlowCall call);
}
class CallContextSpecificCall extends CallContextCall, TSpecificCall {
override string toString() {
exists(DataFlowCall call | this = TSpecificCall(call) | result = "CcCall(" + call + ")")
}
override predicate relevantFor(DataFlowCallable callable) {
recordDataFlowCallSite(this.getCall(), callable)
}
override predicate matchesCall(DataFlowCall call) { call = this.getCall() }
DataFlowCall getCall() { this = TSpecificCall(result) }
}
class CallContextSomeCall extends CallContextCall, TSomeCall {
override string toString() { result = "CcSomeCall" }
override predicate relevantFor(DataFlowCallable callable) {
exists(ParamNode p | getNodeEnclosingCallable(p) = callable)
}
override predicate matchesCall(DataFlowCall call) { any() }
}
class CallContextReturn extends CallContextNoCall, TReturn {
override string toString() {
exists(DataFlowCall call | this = TReturn(_, call) | result = "CcReturn(" + call + ")")
}
override predicate relevantFor(DataFlowCallable callable) {
exists(DataFlowCall call | this = TReturn(_, call) and callEnclosingCallable(call, callable))
}
}
/**
* A call context that is relevant for pruning local flow.
*/
abstract class LocalCallContext extends TLocalFlowCallContext {
abstract string toString();
/** Holds if this call context is relevant for `callable`. */
abstract predicate relevantFor(DataFlowCallable callable);
}
class LocalCallContextAny extends LocalCallContext, TAnyLocalCall {
override string toString() { result = "LocalCcAny" }
override predicate relevantFor(DataFlowCallable callable) { any() }
}
class LocalCallContextSpecificCall extends LocalCallContext, TSpecificLocalCall {
LocalCallContextSpecificCall() { this = TSpecificLocalCall(call) }
DataFlowCall call;
DataFlowCall getCall() { result = call }
override string toString() { result = "LocalCcCall(" + call + ")" }
override predicate relevantFor(DataFlowCallable callable) { relevantLocalCCtx(call, callable) }
}
private predicate relevantLocalCCtx(DataFlowCall call, DataFlowCallable callable) {
exists(Node n | getNodeEnclosingCallable(n) = callable and isUnreachableInCallCached(n, call))
}
/**
* Gets the local call context given the call context and the callable that
* the contexts apply to.
*/
LocalCallContext getLocalCallContext(CallContext ctx, DataFlowCallable callable) {
ctx.relevantFor(callable) and
if relevantLocalCCtx(ctx.(CallContextSpecificCall).getCall(), callable)
then result.(LocalCallContextSpecificCall).getCall() = ctx.(CallContextSpecificCall).getCall()
else result instanceof LocalCallContextAny
}
/**
* The value of a parameter at function entry, viewed as a node in a data
* flow graph.
*/
class ParamNode instanceof Node {
ParamNode() { parameterNode(this, _, _) }
string toString() { result = super.toString() }
predicate hasLocationInfo(
string filepath, int startline, int startcolumn, int endline, int endcolumn
) {
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
}
/**
* Holds if this node is the parameter of callable `c` at the specified
* position.
*/
predicate isParameterOf(DataFlowCallable c, ParameterPosition pos) { parameterNode(this, c, pos) }
}
/** A data-flow node that represents a call argument. */
class ArgNode instanceof Node {
ArgNode() { argumentNode(this, _, _) }
string toString() { result = super.toString() }
predicate hasLocationInfo(
string filepath, int startline, int startcolumn, int endline, int endcolumn
) {
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
}
/** Holds if this argument occurs at the given position in the given call. */
final predicate argumentOf(DataFlowCall call, ArgumentPosition pos) {
argumentNode(this, call, pos)
}
}
/**
* A node from which flow can return to the caller. This is either a regular
* `ReturnNode` or a `PostUpdateNode` corresponding to the value of a parameter.
*/
class ReturnNodeExt instanceof Node {
ReturnNodeExt() { returnNodeExt(this, _) }
string toString() { result = super.toString() }
predicate hasLocationInfo(
string filepath, int startline, int startcolumn, int endline, int endcolumn
) {
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
}
/** Gets the kind of this returned value. */
ReturnKindExt getKind() { returnNodeExt(this, result) }
}
/**
* A node to which data can flow from a call. Either an ordinary out node
* or a post-update node associated with a call argument.
*/
class OutNodeExt instanceof Node {
OutNodeExt() { outNodeExt(this) }
string toString() { result = super.toString() }
predicate hasLocationInfo(
string filepath, int startline, int startcolumn, int endline, int endcolumn
) {
super.hasLocationInfo(filepath, startline, startcolumn, endline, endcolumn)
}
}
/**
* An extended return kind. A return kind describes how data can be returned
* from a callable. This can either be through a returned value or an updated
* parameter.
*/
abstract class ReturnKindExt extends TReturnKindExt {
/** Gets a textual representation of this return kind. */
abstract string toString();
/** Gets a node corresponding to data flow out of `call`. */
final OutNodeExt getAnOutNode(DataFlowCall call) { result = getAnOutNodeExt(call, this) }
}
class ValueReturnKind extends ReturnKindExt, TValueReturn {
private ReturnKind kind;
ValueReturnKind() { this = TValueReturn(kind) }
ReturnKind getKind() { result = kind }
override string toString() { result = kind.toString() }
}
class ParamUpdateReturnKind extends ReturnKindExt, TParamUpdate {
private ParameterPosition pos;
ParamUpdateReturnKind() { this = TParamUpdate(pos) }
ParameterPosition getPosition() { result = pos }
pragma[nomagic]
ArgumentPosition getAMatchingArgumentPosition() { parameterMatch(pos, result) }
override string toString() { result = "param update " + pos }
}
/** A callable tagged with a relevant return kind. */
class ReturnPosition extends TReturnPosition0 {
private DataFlowCallable c;
private ReturnKindExt kind;
ReturnPosition() { this = TReturnPosition0(c, kind) }
/** Gets the callable. */
DataFlowCallable getCallable() { result = c }
/** Gets the return kind. */
ReturnKindExt getKind() { result = kind }
/** Gets a textual representation of this return position. */
string toString() { result = "[" + kind + "] " + c }
}
/**
* Gets the enclosing callable of `n`. Unlike `n.getEnclosingCallable()`, this
* predicate ensures that joins go from `n` to the result instead of the other
* way around.
*/
pragma[inline]
DataFlowCallable getNodeEnclosingCallable(Node n) {
nodeEnclosingCallable(pragma[only_bind_out](n), pragma[only_bind_into](result))
}
/** Gets the type of `n` used for type pruning. */
pragma[inline]
DataFlowType getNodeDataFlowType(Node n) {
nodeDataFlowType(pragma[only_bind_out](n), pragma[only_bind_into](result))
}
pragma[noinline]
private DataFlowCallable returnNodeGetEnclosingCallable(ReturnNodeExt ret) {
result = getNodeEnclosingCallable(ret)
}
pragma[noinline]
private ReturnPosition getReturnPosition0(ReturnNodeExt ret, ReturnKindExt kind) {
result.getCallable() = returnNodeGetEnclosingCallable(ret) and
kind = result.getKind()
}
pragma[noinline]
ReturnPosition getReturnPosition(ReturnNodeExt ret) {
result = getReturnPosition0(ret, ret.getKind())
}
/**
* Checks whether `inner` can return to `call` in the call context `innercc`.
* Assumes a context of `inner = viableCallableExt(call)`.
*/
bindingset[innercc, inner, call]
predicate checkCallContextReturn(CallContext innercc, DataFlowCallable inner, DataFlowCall call) {
innercc instanceof CallContextAny
or
exists(DataFlowCallable c0, DataFlowCall call0 |
callEnclosingCallable(call0, inner) and
innercc = TReturn(c0, call0) and
c0 = prunedViableImplInCallContextReverse(call0, call)
)
}
/**
* Checks whether `call` can resolve to `calltarget` in the call context `cc`.
* Assumes a context of `calltarget = viableCallableExt(call)`.
*/
bindingset[cc, call, calltarget]
predicate checkCallContextCall(CallContext cc, DataFlowCall call, DataFlowCallable calltarget) {
exists(DataFlowCall ctx | cc = TSpecificCall(ctx) |
if reducedViableImplInCallContext(call, _, ctx)
then calltarget = prunedViableImplInCallContext(call, ctx)
else any()
)
or
cc instanceof CallContextSomeCall
or
cc instanceof CallContextAny
or
cc instanceof CallContextReturn
}
/**
* Resolves a return from `callable` in `cc` to `call`. This is equivalent to
* `callable = viableCallableExt(call) and checkCallContextReturn(cc, callable, call)`.
*/
bindingset[cc, callable]
predicate resolveReturn(CallContext cc, DataFlowCallable callable, DataFlowCall call) {
cc instanceof CallContextAny and callable = viableCallableExt(call)
or
exists(DataFlowCallable c0, DataFlowCall call0 |
callEnclosingCallable(call0, callable) and
cc = TReturn(c0, call0) and
c0 = prunedViableImplInCallContextReverse(call0, call)
)
}
/**
* Resolves a call from `call` in `cc` to `result`. This is equivalent to
* `result = viableCallableExt(call) and checkCallContextCall(cc, call, result)`.
*/
bindingset[call, cc]
DataFlowCallable resolveCall(DataFlowCall call, CallContext cc) {
exists(DataFlowCall ctx | cc = TSpecificCall(ctx) |
if reducedViableImplInCallContext(call, _, ctx)
then result = prunedViableImplInCallContext(call, ctx)
else result = viableCallableExt(call)
)
or
result = viableCallableExt(call) and cc instanceof CallContextSomeCall
or
result = viableCallableExt(call) and cc instanceof CallContextAny
or
result = viableCallableExt(call) and cc instanceof CallContextReturn
}
/** An optional Boolean value. */
class BooleanOption extends TBooleanOption {
string toString() {
this = TBooleanNone() and result = "<none>"
or
this = TBooleanSome(any(boolean b | result = b.toString()))
}
}
/** An optional `DataFlowCall`. */
class DataFlowCallOption extends TDataFlowCallOption {
string toString() {
this = TDataFlowCallNone() and
result = "(none)"
or
exists(DataFlowCall call |
this = TDataFlowCallSome(call) and
result = call.toString()
)
}
}
/** An optional `ParamNode`. */
class ParamNodeOption extends TParamNodeOption {
string toString() {
this = TParamNodeNone() and
result = "(none)"
or
exists(ParamNode p |
this = TParamNodeSome(p) and
result = p.toString()
)
}
}
/**
* A return context used to calculate flow summaries in reverse flow.
*
* The possible values are:
*
* - `TReturnCtxNone()`: no return flow.
* - `TReturnCtxNoFlowThrough()`: return flow, but flow through is not possible.
* - `TReturnCtxMaybeFlowThrough(ReturnPosition pos)`: return flow, of kind `pos`, and
* flow through may be possible.
*/
class ReturnCtx extends TReturnCtx {
string toString() {
this = TReturnCtxNone() and
result = "(none)"
or
this = TReturnCtxNoFlowThrough() and
result = "(no flow through)"
or
exists(ReturnPosition pos |
this = TReturnCtxMaybeFlowThrough(pos) and
result = pos.toString()
)
}
}
/**
* The front of an approximated access path. This is either a head or a nil.
*/
abstract class ApproxAccessPathFront extends TApproxAccessPathFront {
abstract string toString();
abstract boolean toBoolNonEmpty();
ContentApprox getHead() { this = TApproxFrontHead(result) }
pragma[nomagic]
Content getAHead() {
exists(ContentApprox cont |
this = TApproxFrontHead(cont) and
cont = getContentApprox(result)
)
}
}
class ApproxAccessPathFrontNil extends ApproxAccessPathFront, TApproxFrontNil {
override string toString() { result = "nil" }
override boolean toBoolNonEmpty() { result = false }
}
class ApproxAccessPathFrontHead extends ApproxAccessPathFront, TApproxFrontHead {
private ContentApprox c;
ApproxAccessPathFrontHead() { this = TApproxFrontHead(c) }
override string toString() { result = c.toString() }
override boolean toBoolNonEmpty() { result = true }
}
/** An optional approximated access path front. */
class ApproxAccessPathFrontOption extends TApproxAccessPathFrontOption {
string toString() {
this = TApproxAccessPathFrontNone() and result = "<none>"
or
this = TApproxAccessPathFrontSome(any(ApproxAccessPathFront apf | result = apf.toString()))
}
}
/**
* The front of an access path. This is either a head or a nil.
*/
abstract class AccessPathFront extends TAccessPathFront {
abstract string toString();
abstract ApproxAccessPathFront toApprox();
Content getHead() { this = TFrontHead(result) }
}
class AccessPathFrontNil extends AccessPathFront, TFrontNil {
override string toString() { result = "nil" }
override ApproxAccessPathFront toApprox() { result = TApproxFrontNil() }
}
class AccessPathFrontHead extends AccessPathFront, TFrontHead {
private Content c;
AccessPathFrontHead() { this = TFrontHead(c) }
override string toString() { result = c.toString() }
override ApproxAccessPathFront toApprox() { result.getAHead() = c }
}
/** An optional access path front. */
class AccessPathFrontOption extends TAccessPathFrontOption {
string toString() {
this = TAccessPathFrontNone() and result = "<none>"
or
this = TAccessPathFrontSome(any(AccessPathFront apf | result = apf.toString()))
}
}