Files
codeql/python/extractor/lark/parsers/xearley.py

157 lines
6.1 KiB
Python

"This module implements an experimental Earley Parser with a dynamic lexer"
# The parser uses a parse-forest to keep track of derivations and ambiguations.
# When the parse ends successfully, a disambiguation stage resolves all ambiguity
# (right now ambiguity resolution is not developed beyond the needs of lark)
# Afterwards the parse tree is reduced (transformed) according to user callbacks.
# I use the no-recursion version of Transformer and Visitor, because the tree might be
# deeper than Python's recursion limit (a bit absurd, but that's life)
#
# The algorithm keeps track of each state set, using a corresponding Column instance.
# Column keeps track of new items using NewsList instances.
#
# Instead of running a lexer beforehand, or using a costy char-by-char method, this parser
# uses regular expressions by necessity, achieving high-performance while maintaining all of
# Earley's power in parsing any CFG.
#
#
# Author: Erez Shinan (2017)
# Email : erezshin@gmail.com
from collections import defaultdict
from ..exceptions import ParseError, UnexpectedCharacters
from ..lexer import Token
from ..tree import Tree
from .grammar_analysis import GrammarAnalyzer
from ..grammar import NonTerminal, Terminal
from .earley import ApplyCallbacks, Item, Column
class Parser:
def __init__(self, parser_conf, term_matcher, resolve_ambiguity=None, ignore=(), predict_all=False, complete_lex=False):
self.analysis = GrammarAnalyzer(parser_conf)
self.parser_conf = parser_conf
self.resolve_ambiguity = resolve_ambiguity
self.ignore = [Terminal(t) for t in ignore]
self.predict_all = predict_all
self.complete_lex = complete_lex
self.FIRST = self.analysis.FIRST
self.postprocess = {}
self.predictions = {}
for rule in parser_conf.rules:
self.postprocess[rule] = getattr(parser_conf.callback, rule.alias)
self.predictions[rule.origin] = [x.rule for x in self.analysis.expand_rule(rule.origin)]
self.term_matcher = term_matcher
def parse(self, stream, start_symbol=None):
# Define parser functions
start_symbol = NonTerminal(start_symbol or self.parser_conf.start)
delayed_matches = defaultdict(list)
match = self.term_matcher
text_line = 1
text_column = 1
def predict(nonterm, column):
assert not nonterm.is_term, nonterm
return [Item(rule, 0, column, None) for rule in self.predictions[nonterm]]
def complete(item):
name = item.rule.origin
return [i.advance(item.tree) for i in item.start.to_predict if i.expect == name]
def predict_and_complete(column):
while True:
to_predict = {x.expect for x in column.to_predict.get_news()
if x.ptr} # if not part of an already predicted batch
to_reduce = column.to_reduce.get_news()
if not (to_predict or to_reduce):
break
for nonterm in to_predict:
column.add( predict(nonterm, column) )
for item in to_reduce:
new_items = list(complete(item))
if item in new_items:
raise ParseError('Infinite recursion detected! (rule %s)' % item.rule)
column.add(new_items)
def scan(i, column):
to_scan = column.to_scan
for x in self.ignore:
m = match(x, stream, i)
if m:
delayed_matches[m.end()] += set(to_scan)
delayed_matches[m.end()] += set(column.to_reduce)
# TODO add partial matches for ignore too?
# s = m.group(0)
# for j in range(1, len(s)):
# m = x.match(s[:-j])
# if m:
# delayed_matches[m.end()] += to_scan
for item in to_scan:
m = match(item.expect, stream, i)
if m:
t = Token(item.expect.name, m.group(0), i, text_line, text_column)
delayed_matches[m.end()].append(item.advance(t))
if self.complete_lex:
s = m.group(0)
for j in range(1, len(s)):
m = match(item.expect, s[:-j])
if m:
t = Token(item.expect.name, m.group(0), i, text_line, text_column)
delayed_matches[i+m.end()].append(item.advance(t))
next_set = Column(i+1, self.FIRST, predict_all=self.predict_all)
next_set.add(delayed_matches[i+1])
del delayed_matches[i+1] # No longer needed, so unburden memory
if not next_set and not delayed_matches:
raise UnexpectedCharacters(stream, i, text_line, text_column, {item.expect for item in to_scan}, set(to_scan))
return next_set
# Main loop starts
column0 = Column(0, self.FIRST, predict_all=self.predict_all)
column0.add(predict(start_symbol, column0))
column = column0
for i, token in enumerate(stream):
predict_and_complete(column)
column = scan(i, column)
if token == '\n':
text_line += 1
text_column = 1
else:
text_column += 1
predict_and_complete(column)
# Parse ended. Now build a parse tree
solutions = [n.tree for n in column.to_reduce
if n.rule.origin==start_symbol and n.start is column0]
if not solutions:
expected_tokens = [t.expect for t in column.to_scan]
raise ParseError('Unexpected end of input! Expecting a terminal of: %s' % expected_tokens)
elif len(solutions) == 1:
tree = solutions[0]
else:
tree = Tree('_ambig', solutions)
if self.resolve_ambiguity:
tree = self.resolve_ambiguity(tree)
return ApplyCallbacks(self.postprocess).transform(tree)