/* * Copyright (C) 2006 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package android.app; import android.content.Intent; import android.content.ContextWrapper; import android.os.IBinder; /** * A Service is an application component representing either an application's desire * to perform a longer-running operation while not interacting with the user * or to supply functionality for other applications to use. Each service * class must have a corresponding * {@link android.R.styleable#AndroidManifestService <service>} * declaration in its package's AndroidManifest.xml. Services * can be started with * {@link android.content.Context#startService Context.startService()} and * {@link android.content.Context#bindService Context.bindService()}. * *

Note that services, like other application objects, run in the main * thread of their hosting process. This means that, if your service is going * to do any CPU intensive (such as MP3 playback) or blocking (such as * networking) operations, it should spawn its own thread in which to do that * work. More information on this can be found in * Processes and * Threads. The {@link IntentService} class is available * as a standard implementation of Service that has its own thread where it * schedules its work to be done.

* *

Topics covered here: *

    *
  1. What is a Service? *
  2. Service Lifecycle *
  3. Permissions *
  4. Process Lifecycle *
  5. Local Service Sample *
  6. Remote Messenger Service Sample *
* *
*

Developer Guides

*

For a detailed discussion about how to create services, read the * Services developer guide.

*
* * *

What is a Service?

* *

Most confusion about the Service class actually revolves around what * it is not:

* * * *

Thus a Service itself is actually very simple, providing two main features:

* * * *

When a Service component is actually created, for either of these reasons, * all that the system actually does is instantiate the component * and call its {@link #onCreate} and any other appropriate callbacks on the * main thread. It is up to the Service to implement these with the appropriate * behavior, such as creating a secondary thread in which it does its work.

* *

Note that because Service itself is so simple, you can make your * interaction with it as simple or complicated as you want: from treating it * as a local Java object that you make direct method calls on (as illustrated * by Local Service Sample), to providing * a full remoteable interface using AIDL.

* * *

Service Lifecycle

* *

There are two reasons that a service can be run by the system. If someone * calls {@link android.content.Context#startService Context.startService()} then the system will * retrieve the service (creating it and calling its {@link #onCreate} method * if needed) and then call its {@link #onStartCommand} method with the * arguments supplied by the client. The service will at this point continue * running until {@link android.content.Context#stopService Context.stopService()} or * {@link #stopSelf()} is called. Note that multiple calls to * Context.startService() do not nest (though they do result in multiple corresponding * calls to onStartCommand()), so no matter how many times it is started a service * will be stopped once Context.stopService() or stopSelf() is called; however, * services can use their {@link #stopSelf(int)} method to ensure the service is * not stopped until started intents have been processed. * *

For started services, there are two additional major modes of operation * they can decide to run in, depending on the value they return from * onStartCommand(): {@link #START_STICKY} is used for services that are * explicitly started and stopped as needed, while {@link #START_NOT_STICKY} * or {@link #START_REDELIVER_INTENT} are used for services that should only * remain running while processing any commands sent to them. See the linked * documentation for more detail on the semantics. * *

Clients can also use {@link android.content.Context#bindService Context.bindService()} to * obtain a persistent connection to a service. This likewise creates the * service if it is not already running (calling {@link #onCreate} while * doing so), but does not call onStartCommand(). The client will receive the * {@link android.os.IBinder} object that the service returns from its * {@link #onBind} method, allowing the client to then make calls back * to the service. The service will remain running as long as the connection * is established (whether or not the client retains a reference on the * service's IBinder). Usually the IBinder returned is for a complex * interface that has been written * in aidl. * *

A service can be both started and have connections bound to it. In such * a case, the system will keep the service running as long as either it is * started or there are one or more connections to it with the * {@link android.content.Context#BIND_AUTO_CREATE Context.BIND_AUTO_CREATE} * flag. Once neither * of these situations hold, the service's {@link #onDestroy} method is called * and the service is effectively terminated. All cleanup (stopping threads, * unregistering receivers) should be complete upon returning from onDestroy(). * * *

Permissions

* *

Global access to a service can be enforced when it is declared in its * manifest's {@link android.R.styleable#AndroidManifestService <service>} * tag. By doing so, other applications will need to declare a corresponding * {@link android.R.styleable#AndroidManifestUsesPermission <uses-permission>} * element in their own manifest to be able to start, stop, or bind to * the service. * *

As of {@link android.os.Build.VERSION_CODES#GINGERBREAD}, when using * {@link Context#startService(Intent) Context.startService(Intent)}, you can * also set {@link Intent#FLAG_GRANT_READ_URI_PERMISSION * Intent.FLAG_GRANT_READ_URI_PERMISSION} and/or {@link Intent#FLAG_GRANT_WRITE_URI_PERMISSION * Intent.FLAG_GRANT_WRITE_URI_PERMISSION} on the Intent. This will grant the * Service temporary access to the specific URIs in the Intent. Access will * remain until the Service has called {@link #stopSelf(int)} for that start * command or a later one, or until the Service has been completely stopped. * This works for granting access to the other apps that have not requested * the permission protecting the Service, or even when the Service is not * exported at all. * *

In addition, a service can protect individual IPC calls into it with * permissions, by calling the * {@link #checkCallingPermission} * method before executing the implementation of that call. * *

See the Security and Permissions * document for more information on permissions and security in general. * * *

Process Lifecycle

* *

The Android system will attempt to keep the process hosting a service * around as long as the service has been started or has clients bound to it. * When running low on memory and needing to kill existing processes, the * priority of a process hosting the service will be the higher of the * following possibilities: * *

* *

Note this means that most of the time your service is running, it may * be killed by the system if it is under heavy memory pressure. If this * happens, the system will later try to restart the service. An important * consequence of this is that if you implement {@link #onStartCommand onStartCommand()} * to schedule work to be done asynchronously or in another thread, then you * may want to use {@link #START_FLAG_REDELIVERY} to have the system * re-deliver an Intent for you so that it does not get lost if your service * is killed while processing it. * *

Other application components running in the same process as the service * (such as an {@link android.app.Activity}) can, of course, increase the * importance of the overall * process beyond just the importance of the service itself. * * *

Local Service Sample

* *

One of the most common uses of a Service is as a secondary component * running alongside other parts of an application, in the same process as * the rest of the components. All components of an .apk run in the same * process unless explicitly stated otherwise, so this is a typical situation. * *

When used in this way, by assuming the * components are in the same process, you can greatly simplify the interaction * between them: clients of the service can simply cast the IBinder they * receive from it to a concrete class published by the service. * *

An example of this use of a Service is shown here. First is the Service * itself, publishing a custom class when bound: * * {@sample development/samples/ApiDemos/src/com/example/android/apis/app/LocalService.java * service} * *

With that done, one can now write client code that directly accesses the * running service, such as: * * {@sample development/samples/ApiDemos/src/com/example/android/apis/app/LocalServiceActivities.java * bind} * * *

Remote Messenger Service Sample

* *

If you need to be able to write a Service that can perform complicated * communication with clients in remote processes (beyond simply the use of * {@link Context#startService(Intent) Context.startService} to send * commands to it), then you can use the {@link android.os.Messenger} class * instead of writing full AIDL files. * *

An example of a Service that uses Messenger as its client interface * is shown here. First is the Service itself, publishing a Messenger to * an internal Handler when bound: * * {@sample development/samples/ApiDemos/src/com/example/android/apis/app/MessengerService.java * service} * *

If we want to make this service run in a remote process (instead of the * standard one for its .apk), we can use android:process in its * manifest tag to specify one: * * {@sample development/samples/ApiDemos/AndroidManifest.xml remote_service_declaration} * *

Note that the name "remote" chosen here is arbitrary, and you can use * other names if you want additional processes. The ':' prefix appends the * name to your package's standard process name. * *

With that done, clients can now bind to the service and send messages * to it. Note that this allows clients to register with it to receive * messages back as well: * * {@sample development/samples/ApiDemos/src/com/example/android/apis/app/MessengerServiceActivities.java * bind} */ public abstract class Service extends ContextWrapper { /** * Called by the system when the service is first created. Do not call this method directly. */ public void onCreate() { } /** * @deprecated Implement {@link #onStartCommand(Intent, int, int)} instead. */ @Deprecated public void onStart(Intent intent, int startId) { } /** * Called by the system every time a client explicitly starts the service by calling * {@link android.content.Context#startService}, providing the arguments it supplied and a * unique integer token representing the start request. Do not call this method directly. * *

For backwards compatibility, the default implementation calls * {@link #onStart} and returns either {@link #START_STICKY} * or {@link #START_STICKY_COMPATIBILITY}. * *

Note that the system calls this on your * service's main thread. A service's main thread is the same * thread where UI operations take place for Activities running in the * same process. You should always avoid stalling the main * thread's event loop. When doing long-running operations, * network calls, or heavy disk I/O, you should kick off a new * thread, or use {@link android.os.AsyncTask}.

* * @param intent The Intent supplied to {@link android.content.Context#startService}, * as given. This may be null if the service is being restarted after * its process has gone away, and it had previously returned anything * except {@link #START_STICKY_COMPATIBILITY}. * @param flags Additional data about this start request. * @param startId A unique integer representing this specific request to * start. Use with {@link #stopSelfResult(int)}. * * @return The return value indicates what semantics the system should * use for the service's current started state. It may be one of the * constants associated with the {@link #START_CONTINUATION_MASK} bits. * * @see #stopSelfResult(int) */ public int onStartCommand(Intent intent, int flags, int startId) { return -1; } /** * Called by the system to notify a Service that it is no longer used and is being removed. The * service should clean up any resources it holds (threads, registered * receivers, etc) at this point. Upon return, there will be no more calls * in to this Service object and it is effectively dead. Do not call this method directly. */ public void onDestroy() { } public abstract IBinder onBind(Intent intent); public void onRebind(Intent intent) {} public void onTaskRemoved(Intent rootIntent) {} public boolean onUnbind(Intent intent) { return false; } }