class ModulusAnalysis { final int c1 = 42; final int c2 = 43; void m(int i, boolean cond, int x, int y, int[] arr) { int eq = i + 3; int mul = eq * c1 + 3; // congruent 3 mod 42 int seven = 7; if (mul % c2 == seven) { System.out.println(mul); // congruent 3 mod 42, 7 mod 43 } int j = cond ? i * 4 + 3 : i * 8 + 7; System.out.println(j); // congruent 3 mod 4 if (x % c1 == 3 && y % c1 == 7) { System.out.println(x + y); // congruent 10 mod 42 } if (x % c1 == 3 && y % c1 == 7) { System.out.println(x - y); // congruent 38 mod 42 } int l = arr.length * 4 - 11; System.out.println(l); // congruent 1 mod 4 l = getArray().length * 4 - 11; System.out.println(l); // congruent 1 mod 4 if (cond) { j = i * 4 + 3; } else { j = i * 8 + 7; } System.out.println(j); // congruent 3 mod 4 if (cond) { System.out.println(j); // congruent 3 mod 4 } else { System.out.println(j); // congruent 3 mod 4 } if ((x & 15) == 3) { System.out.println(x); // congruent 3 mod 16 } } void loops(int cap) { for (int i = 0; i < cap; i++) System.out.println(i); for (int j = 0; j < cap; j += 1) System.out.println(j); for (int k = 0; k < cap; k += 3) System.out.println(k); // congruent 0 mod 3 } int[] getArray(){ return new int[42]; } }