This change removes any IR instructions that can be statically proven unreachable. To detect unreachable IR, we first run a simple constant value analysis on the IR. Then, any `ConditionalBranch` with a constant condition has the appropriate edge marked as "infeasible". We define a class `ReachableBlock` as any `IRBlock` with a path from the entry block of the function. SSA construction has been modified to operate only on `ReachableBlock` and `ReachableInstruction`, which ensures that only reachable IR gets translated into SSA form. For any infeasible edge where its predecessor block is reachable, we replace the original target of the branch with an `Unreached` instruction, which lets us preserve the invariant that all `ConditionalBranch` instructions have both a true and a false edge, and allows guard inference to still work.
The changes to `SSAConstruction.qll` are not as scary as they look. They are almost entirely a mechanical replacement of `OldIR::IRBlock` with `OldBlock`, which is just an alias for `ReachableBlock`.
Note that the `constant_func.ql` test can determine that the two new test functions always return 0.
Removing unreachable code helps get rid of some common FPs in IR-based dataflow analysis, especially for constructs like `while(true)`.
This change moves the simple constant analysis that was used by the const_func test into a pyrameterized module for use on any stage of the IR. This will be used to detect unreachable code.
This sort of fixes one FP and causes a new FN, but for the wrong reasons. The IR dataflow is tracking the reference itself, rather than the referred-to object. Once we can better model indirections, we can make this work correctly.
This change is still the right thing to do, because it ensures that the dataflow is looking at actual expression being computed by the instruction.
Made `Node::getType()`, `Node::asParameter()`, and `Node::asUninitialized()` operate directly on the IR. This actually fixed several diffs compared to the AST dataflow, because `getType()` wasn't holding for nodes that weren't `Exprs`.
Made `Uninitialized` a `VariableInstruction`. This makes it consistent with `InitializeParameter`.
This fixes a subtle bug in the construction of aliased SSA. `getResultMemoryAccess` was failing to return a `MemoryAccess` for a store to a variable whose address escaped. This is because no `VirtualIRVariable` was being created for such variables. The code was assuming that any access to such a variable would be via `UnknownMemoryAccess`. The result is that accesses to such variables were not being modeled in SSA at all.
Instead, the way to handle this is to have a `VariableMemoryAccess` even when the variable being accessed has escaped, and to have `VariableMemoryAccess::getVirtualVariable()` return the `UnknownVirtualVariable` for escaped variables. In the future, this will also let us be less conservative about inserting `Chi` nodes, because we'll be able to determine that there's an exact overlap between two accesses to the same escaped variable in some cases.
This commit adds Chi nodes to the successor relation and accounts for
them in the CFG, but does not add them to the SSA data graph. Chi nodes
are inserted for partial writes to any VirtualVariable, regardless of
whether the partial write reaches any uses.
This test was failing due to a semantic merge conflict between #509,
which added `UninitializedInstruction`, and #517, which added new test
code that would get `UninitializedInstruction`s in it after merging with #509.
This adds a `NewOrNewArrayExpr.getPlacementPointer` predicate and uses
it in `Alloc.qll` to detect when a `new`-expression is not an
allocation.
User-defined replacements for `operator new` may not be allocations
either, but the code continues to assume that they are. It's possible
that we want to change this assumption in the future or leave it up to
individual queries to decide on which side to err. It's hard to
statically tell whether `operator new` has been overloaded in a
particular file because it can be overloaded by a definition that is not
in scope but is only linked together with that file.
This commit inserts an `Uninitialized` instruction to "initialize" a local variable when that variable is initialized with an initializer list. This ensures that there is always a definition of the whole variable before any read or write to part of that variable.
This change appears in a different form in @rdmarsh2's Chi node PR, but I needed to refactor the initialization code anyway to handle ConditionDeclExpr.