I had included `InitializeNonLocal` in the recursion because it made
everything look better in the presence of a bug that's since been fixed.
Taking it out means the sanity test is again aligned with the old
`isChiForAllAliasedMemory`.
`Instruction.getDefinitionOverlap()` depends on `SSAConstruction::getMemoryOperandDefinition()`, which in turn depends on `SSAConstruction::hasMemoryOperandDefinition()`. When the definition in question came from a `Chi` instruction, `hasMemoryOperandDefinition()` incorrectly bound `overlap` to the overlap relationship between the original (non-`Chi`) instruction and the use. The fix is to make use of the `actualDefLocation` parameter to `getDefinitionOrChiInstruction()`, which specifies the location for the result of the `Chi` in that case.
The result of `getDefinitionOverlap()` should never be `MayPartiallyOverlap`, because if that were the case, we should have inserted as `Chi` instruction and hooked the definition up to that instead.
There are quite a few existing failures.
This predicate replaces `isChiForAllAliasedMemory`, which was always
intended to be temporary. A test is added to `IRSanity.qll` to verify
that the new predicate corresponds exactly with (a fixed version of) the
old one.
The implementation of the new predicate,
`Cached::hasConflatedMemoryResult` in `SSAConstruction.qll`, is faster
to compute than the old `isChiForAllAliasedMemory` because it uses
information that's readily available during SSA construction.
This PR changes the IR we generate for functions that accept a variable argument list. Rather than simply using `BuiltInOperationInstruction` to model the various `va_*` macros as mysterious function-like operations, we now model them in more detail. The intent is to enable better alias analysis and taint flow through varargs.
The `va_start` macro now generates a unary `VarArgsStart` instruction that takes the address of the ellipsis pseudo-parameter as its operand, and returns a value of type `std::va_list`. This value is then stored into the actual `std::va_list` variable via a regular `Store`.
The `va_arg` macro now loads the `std::va_list` argument, then emits a `VarArg` instruction on the result. This returns the address of the vararg argument to be loaded. That address is later used as the address operand of a regular `Load` to return the value of the argument. To model the side effect of moving to the next argument, we emit a `NextVarArg` instruction that takes the previous `std::va_list` value and returns an updated one, which is then stored back into the `std::va_list` variable.
The `va_end` macro just emits a `VarArgsEnd` unary instruction that takes the address of the `std::va_list` argument and does nothing, since `va_end` doesn't really do anything on most compiler implementations anyway.
The `va_copy` macro is just modeled as a plain copy.