The IR tests were getting kind of unwieldy. We were using "ir.cpp" to contain test cases that covered both IR construction (every language construct imaginable) and SSA construction. We would then build and dump all three flavors of IR. For IR construction tests, examining the SSA dumps when you add a new test case is tedious.
To make this easier to manage, I've split the SSA-specific test cases out into a separate directory. "ir.cpp" should now contain only IR construction test cases, and "ssa.cpp" should contain only SSA construction test cases. We dump just the raw IR for "ir.cpp", and just the two SSA flavors for "ssa.cpp". We still run all three flavors of the IR sanity tests for "ir.cpp", though.
I also removed the "ssa_block_count.ql" test, which wasn't really adding any coverage, because any change to the block count would be reflected in the dump as well.
This PR adds new predicates to `Declaration` and `Type` to get a fully-qualified canonical name for the element, suitable for debugging and dumps. It includes template parameters, cv qualifiers, function parameter and return types, and fully-qualified names for all symbols. These strings are too large to compute in productions queries, so they should be used only for dumps and debugging. Feel free to suggest better names for these predicates.
I've updated PrintAST and PrintIR to use these instead of `Function.getFullSignature()`. The biggest advantage of the new predicates is that they handle lambdas and local classes, which `getQualifiedName` and `getFullSignature` do not. This makes IR and AST dumps much more usable for real-world snapshots.
Along the way, I cleaned up some of our handling of `IntegralType` to use a single table for tracking the signed, unsigned, and canonical versions of each type. The canonical part is new, and was necessary for `getTypeIdentityString` so that `signed int` and `int` both appear as `int`.
These predicates currently take a pair of `IRBlock`s - as it stands, at
most one edge can exist from one `IRBlock` to a given other `IRBlock`.
We may need to revisit that assumption and create an `IREdge` IPA type
at some future date
There are a few IR APIs that we've found to be confusingly named. This PR renames them to be more consistent within the IR and with the AST API:
`Instruction.getFunction` -> `Instruction.getEnclosingFunction`: This was especially confusing when you'd call `FunctionAddressInstruction.getFunction` to get the function whose address was taken, and wound up with the enclosing function instead.
`Instruction.getXXXOperand` -> `Instruction.getXXX`. Now that `Operand` is an exposed type, we want a way to get a specific `Operand` of an `Instruction`, but more often we want to get the definition instruction of that operand. Now, the pattern is that `getXXXOperand` returns the `Operand`, and `getXXX` is equivalent to `getXXXOperand().getDefinitionInstruction()`.
`Operand.getInstruction` -> `Operand.getUseInstruction`: More consistent with the existing `Operand.getDefinitionInstruction` predicate.
These queries have no results on our test cases in the repo, but
`ambiguousSuccessors` has results on any large C++ code base, and
`unexplainedLoop` has results on Windows builds of ChakraCore.