When `PrintSSA.qll` is imported, IR dumps will be annotated with the alias analysis information used during SSA construction. When printing this information, we incorrectly treated instructions at offset -1, which should only be `Phi` instructions, as `Chi` instructions for the instruction at offset 0. This produced phantom annotations, but did not affect the correctness of the actual IR.
The IR generation for `InitializeIndirection` currently connects its load operand to the result of the corresponding `InitializeParameter` instruction. This isn't exactly wrong, but it doesn't fit the IR invariant of "All unmodeled uses consume `UnmodeledDefinition`". Our current code doesn't care, because we just throw away all of the existing def-use information, modeled or otherwise, when we build unaliased SSA. However, some upcoming SSA changes don't work correctly if this invariant is broken.
I've added the trivial IR generation change, along with a new sanity query.
This revert brings back the performance problems in
`DataFlowImplLocal.qll` so they can be fixed in a different way. The fix
in #2872 was asymptotically good but had undesired overhead because it
introduced another predicate in the SCC that existed purely for join
ordering.
I did the revert by inlining the helper predicate, eliminating the
`enclosing` variable, and re-ordering the resulting lines to what they
were before #2872.
This PR adds better support for differentiating complex and imaginary floating-point types from real floating-point types, in both the AST and in the IR type system.
*AST Changes*
- Introduces the new class `TypeDomain`, which can be either `RealDomain`, `ImaginaryDomain` or `ComplexDomain`. "type domain" is the term used for this concept in the C standard, and I couldn't think of a better one.
- Introduces `FloatingPointType.getDomain()`, to get the type domain of the type.
- Introduces `FloatingPointType.getBase()`, to get the numeric base of the type (either 2 or 10).
- Introduces three new subtypes of `FloatingPointType`: `RealNumberType`, `ComplexNumberType`, and `ImaginaryNumberType`, which differentiate between the types based on their type domain. Note that the decimal types (e.g., `_Decimal32`) are included in `RealNumberType`.
- Introduces two new subtypes of `FloatingPointType`: `BinaryFloatingPointType` and `DecimalFloatingPointType`, which differentiate between the types based on their numeric base, independent of type domain.
*IR Changes*
- `IRFloatingPointType` now has two additional parameters: the base and the type domain.
- New test that ensures that C++ types get mapped to the correct IR types.
- New IR test that verifies the IR for some basic usage of complex FP types.
I had included `InitializeNonLocal` in the recursion because it made
everything look better in the presence of a bug that's since been fixed.
Taking it out means the sanity test is again aligned with the old
`isChiForAllAliasedMemory`.
`Instruction.getDefinitionOverlap()` depends on `SSAConstruction::getMemoryOperandDefinition()`, which in turn depends on `SSAConstruction::hasMemoryOperandDefinition()`. When the definition in question came from a `Chi` instruction, `hasMemoryOperandDefinition()` incorrectly bound `overlap` to the overlap relationship between the original (non-`Chi`) instruction and the use. The fix is to make use of the `actualDefLocation` parameter to `getDefinitionOrChiInstruction()`, which specifies the location for the result of the `Chi` in that case.