Data flow: Sync files

This commit is contained in:
Tom Hvitved
2021-02-02 13:03:42 +01:00
parent 2770b4fef8
commit f71505c29c
3 changed files with 5000 additions and 0 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,841 @@
private import DataFlowImplSpecific::Private
private import DataFlowImplSpecific::Public
import Cached
/**
* The cost limits for the `AccessPathFront` to `AccessPathApprox` expansion.
*
* `apLimit` bounds the acceptable fan-out, and `tupleLimit` bounds the
* estimated per-`AccessPathFront` tuple cost. Access paths exceeding both of
* these limits are represented with lower precision during pruning.
*/
predicate accessPathApproxCostLimits(int apLimit, int tupleLimit) {
apLimit = 10 and
tupleLimit = 10000
}
/**
* The cost limits for the `AccessPathApprox` to `AccessPath` expansion.
*
* `apLimit` bounds the acceptable fan-out, and `tupleLimit` bounds the
* estimated per-`AccessPathApprox` tuple cost. Access paths exceeding both of
* these limits are represented with lower precision.
*/
predicate accessPathCostLimits(int apLimit, int tupleLimit) {
apLimit = 5 and
tupleLimit = 1000
}
cached
private module Cached {
/**
* Holds if `p` is the `i`th parameter of a viable dispatch target of `call`.
* The instance parameter is considered to have index `-1`.
*/
pragma[nomagic]
private predicate viableParam(DataFlowCall call, int i, ParameterNode p) {
p.isParameterOf(viableCallable(call), i)
}
/**
* Holds if `arg` is a possible argument to `p` in `call`, taking virtual
* dispatch into account.
*/
cached
predicate viableParamArg(DataFlowCall call, ParameterNode p, ArgumentNode arg) {
exists(int i |
viableParam(call, i, p) and
arg.argumentOf(call, i) and
compatibleTypes(getNodeType(arg), getNodeType(p))
)
}
pragma[nomagic]
private ReturnPosition viableReturnPos(DataFlowCall call, ReturnKindExt kind) {
viableCallable(call) = result.getCallable() and
kind = result.getKind()
}
/**
* Holds if a value at return position `pos` can be returned to `out` via `call`,
* taking virtual dispatch into account.
*/
cached
predicate viableReturnPosOut(DataFlowCall call, ReturnPosition pos, Node out) {
exists(ReturnKindExt kind |
pos = viableReturnPos(call, kind) and
out = kind.getAnOutNode(call)
)
}
/** Provides predicates for calculating flow-through summaries. */
private module FlowThrough {
/**
* The first flow-through approximation:
*
* - Input access paths are abstracted with a Boolean parameter
* that indicates (non-)emptiness.
*/
private module Cand {
/**
* Holds if `p` can flow to `node` in the same callable using only
* value-preserving steps.
*
* `read` indicates whether it is contents of `p` that can flow to `node`.
*/
pragma[nomagic]
private predicate parameterValueFlowCand(ParameterNode p, Node node, boolean read) {
p = node and
read = false
or
// local flow
exists(Node mid |
parameterValueFlowCand(p, mid, read) and
simpleLocalFlowStep(mid, node)
)
or
// read
exists(Node mid |
parameterValueFlowCand(p, mid, false) and
readStep(mid, _, node) and
read = true
)
or
// flow through: no prior read
exists(ArgumentNode arg |
parameterValueFlowArgCand(p, arg, false) and
argumentValueFlowsThroughCand(arg, node, read)
)
or
// flow through: no read inside method
exists(ArgumentNode arg |
parameterValueFlowArgCand(p, arg, read) and
argumentValueFlowsThroughCand(arg, node, false)
)
}
pragma[nomagic]
private predicate parameterValueFlowArgCand(ParameterNode p, ArgumentNode arg, boolean read) {
parameterValueFlowCand(p, arg, read)
}
pragma[nomagic]
predicate parameterValueFlowsToPreUpdateCand(ParameterNode p, PostUpdateNode n) {
parameterValueFlowCand(p, n.getPreUpdateNode(), false)
}
/**
* Holds if `p` can flow to a return node of kind `kind` in the same
* callable using only value-preserving steps, not taking call contexts
* into account.
*
* `read` indicates whether it is contents of `p` that can flow to the return
* node.
*/
predicate parameterValueFlowReturnCand(ParameterNode p, ReturnKind kind, boolean read) {
exists(ReturnNode ret |
parameterValueFlowCand(p, ret, read) and
kind = ret.getKind()
)
}
pragma[nomagic]
private predicate argumentValueFlowsThroughCand0(
DataFlowCall call, ArgumentNode arg, ReturnKind kind, boolean read
) {
exists(ParameterNode param | viableParamArg(call, param, arg) |
parameterValueFlowReturnCand(param, kind, read)
)
}
/**
* Holds if `arg` flows to `out` through a call using only value-preserving steps,
* not taking call contexts into account.
*
* `read` indicates whether it is contents of `arg` that can flow to `out`.
*/
predicate argumentValueFlowsThroughCand(ArgumentNode arg, Node out, boolean read) {
exists(DataFlowCall call, ReturnKind kind |
argumentValueFlowsThroughCand0(call, arg, kind, read) and
out = getAnOutNode(call, kind)
)
}
predicate cand(ParameterNode p, Node n) {
parameterValueFlowCand(p, n, _) and
(
parameterValueFlowReturnCand(p, _, _)
or
parameterValueFlowsToPreUpdateCand(p, _)
)
}
}
/**
* The final flow-through calculation:
*
* - Calculated flow is either value-preserving (`read = TReadStepTypesNone()`)
* or summarized as a single read step with before and after types recorded
* in the `ReadStepTypesOption` parameter.
* - Types are checked using the `compatibleTypes()` relation.
*/
private module Final {
/**
* Holds if `p` can flow to `node` in the same callable using only
* value-preserving steps and possibly a single read step, not taking
* call contexts into account.
*
* If a read step was taken, then `read` captures the `Content`, the
* container type, and the content type.
*/
predicate parameterValueFlow(ParameterNode p, Node node, ReadStepTypesOption read) {
parameterValueFlow0(p, node, read) and
if node instanceof CastingNode
then
// normal flow through
read = TReadStepTypesNone() and
compatibleTypes(getNodeType(p), getNodeType(node))
or
// getter
compatibleTypes(read.getContentType(), getNodeType(node))
else any()
}
pragma[nomagic]
private predicate parameterValueFlow0(ParameterNode p, Node node, ReadStepTypesOption read) {
p = node and
Cand::cand(p, _) and
read = TReadStepTypesNone()
or
// local flow
exists(Node mid |
parameterValueFlow(p, mid, read) and
simpleLocalFlowStep(mid, node)
)
or
// read
exists(Node mid |
parameterValueFlow(p, mid, TReadStepTypesNone()) and
readStepWithTypes(mid, read.getContainerType(), read.getContent(), node,
read.getContentType()) and
Cand::parameterValueFlowReturnCand(p, _, true) and
compatibleTypes(getNodeType(p), read.getContainerType())
)
or
parameterValueFlow0_0(TReadStepTypesNone(), p, node, read)
}
pragma[nomagic]
private predicate parameterValueFlow0_0(
ReadStepTypesOption mustBeNone, ParameterNode p, Node node, ReadStepTypesOption read
) {
// flow through: no prior read
exists(ArgumentNode arg |
parameterValueFlowArg(p, arg, mustBeNone) and
argumentValueFlowsThrough(arg, read, node)
)
or
// flow through: no read inside method
exists(ArgumentNode arg |
parameterValueFlowArg(p, arg, read) and
argumentValueFlowsThrough(arg, mustBeNone, node)
)
}
pragma[nomagic]
private predicate parameterValueFlowArg(
ParameterNode p, ArgumentNode arg, ReadStepTypesOption read
) {
parameterValueFlow(p, arg, read) and
Cand::argumentValueFlowsThroughCand(arg, _, _)
}
pragma[nomagic]
private predicate argumentValueFlowsThrough0(
DataFlowCall call, ArgumentNode arg, ReturnKind kind, ReadStepTypesOption read
) {
exists(ParameterNode param | viableParamArg(call, param, arg) |
parameterValueFlowReturn(param, kind, read)
)
}
/**
* Holds if `arg` flows to `out` through a call using only
* value-preserving steps and possibly a single read step, not taking
* call contexts into account.
*
* If a read step was taken, then `read` captures the `Content`, the
* container type, and the content type.
*/
pragma[nomagic]
predicate argumentValueFlowsThrough(ArgumentNode arg, ReadStepTypesOption read, Node out) {
exists(DataFlowCall call, ReturnKind kind |
argumentValueFlowsThrough0(call, arg, kind, read) and
out = getAnOutNode(call, kind)
|
// normal flow through
read = TReadStepTypesNone() and
compatibleTypes(getNodeType(arg), getNodeType(out))
or
// getter
compatibleTypes(getNodeType(arg), read.getContainerType()) and
compatibleTypes(read.getContentType(), getNodeType(out))
)
}
/**
* Holds if `arg` flows to `out` through a call using only
* value-preserving steps and a single read step, not taking call
* contexts into account, thus representing a getter-step.
*/
predicate getterStep(ArgumentNode arg, Content c, Node out) {
argumentValueFlowsThrough(arg, TReadStepTypesSome(_, c, _), out)
}
/**
* Holds if `p` can flow to a return node of kind `kind` in the same
* callable using only value-preserving steps and possibly a single read
* step.
*
* If a read step was taken, then `read` captures the `Content`, the
* container type, and the content type.
*/
private predicate parameterValueFlowReturn(
ParameterNode p, ReturnKind kind, ReadStepTypesOption read
) {
exists(ReturnNode ret |
parameterValueFlow(p, ret, read) and
kind = ret.getKind()
)
}
}
import Final
}
import FlowThrough
cached
private module DispatchWithCallContext {
/**
* Holds if the call context `ctx` reduces the set of viable run-time
* dispatch targets of call `call` in `c`.
*/
cached
predicate reducedViableImplInCallContext(DataFlowCall call, DataFlowCallable c, DataFlowCall ctx) {
exists(int tgts, int ctxtgts |
mayBenefitFromCallContext(call, c) and
c = viableCallable(ctx) and
ctxtgts = count(viableImplInCallContext(call, ctx)) and
tgts = strictcount(viableCallable(call)) and
ctxtgts < tgts
)
}
/**
* Gets a viable run-time dispatch target for the call `call` in the
* context `ctx`. This is restricted to those calls for which a context
* makes a difference.
*/
cached
DataFlowCallable prunedViableImplInCallContext(DataFlowCall call, DataFlowCall ctx) {
result = viableImplInCallContext(call, ctx) and
reducedViableImplInCallContext(call, _, ctx)
}
/**
* Holds if flow returning from callable `c` to call `call` might return
* further and if this path restricts the set of call sites that can be
* returned to.
*/
cached
predicate reducedViableImplInReturn(DataFlowCallable c, DataFlowCall call) {
exists(int tgts, int ctxtgts |
mayBenefitFromCallContext(call, _) and
c = viableCallable(call) and
ctxtgts = count(DataFlowCall ctx | c = viableImplInCallContext(call, ctx)) and
tgts = strictcount(DataFlowCall ctx | viableCallable(ctx) = call.getEnclosingCallable()) and
ctxtgts < tgts
)
}
/**
* Gets a viable run-time dispatch target for the call `call` in the
* context `ctx`. This is restricted to those calls and results for which
* the return flow from the result to `call` restricts the possible context
* `ctx`.
*/
cached
DataFlowCallable prunedViableImplInCallContextReverse(DataFlowCall call, DataFlowCall ctx) {
result = viableImplInCallContext(call, ctx) and
reducedViableImplInReturn(result, call)
}
}
import DispatchWithCallContext
/**
* Holds if `p` can flow to the pre-update node associated with post-update
* node `n`, in the same callable, using only value-preserving steps.
*/
cached
predicate parameterValueFlowsToPreUpdate(ParameterNode p, PostUpdateNode n) {
parameterValueFlow(p, n.getPreUpdateNode(), TReadStepTypesNone())
}
private predicate store(
Node node1, Content c, Node node2, DataFlowType contentType, DataFlowType containerType
) {
storeStep(node1, c, node2) and
readStep(_, c, _) and
contentType = getNodeType(node1) and
containerType = getNodeType(node2)
or
exists(Node n1, Node n2 |
n1 = node1.(PostUpdateNode).getPreUpdateNode() and
n2 = node2.(PostUpdateNode).getPreUpdateNode()
|
argumentValueFlowsThrough(n2, TReadStepTypesSome(containerType, c, contentType), n1)
or
readStep(n2, c, n1) and
contentType = getNodeType(n1) and
containerType = getNodeType(n2)
)
}
/**
* Holds if data can flow from `node1` to `node2` via a direct assignment to
* `f`.
*
* This includes reverse steps through reads when the result of the read has
* been stored into, in order to handle cases like `x.f1.f2 = y`.
*/
cached
predicate store(Node node1, TypedContent tc, Node node2, DataFlowType contentType) {
store(node1, tc.getContent(), node2, contentType, tc.getContainerType())
}
/**
* Holds if the call context `call` either improves virtual dispatch in
* `callable` or if it allows us to prune unreachable nodes in `callable`.
*/
cached
predicate recordDataFlowCallSite(DataFlowCall call, DataFlowCallable callable) {
reducedViableImplInCallContext(_, callable, call)
or
exists(Node n | n.getEnclosingCallable() = callable | isUnreachableInCall(n, call))
}
cached
newtype TCallContext =
TAnyCallContext() or
TSpecificCall(DataFlowCall call) { recordDataFlowCallSite(call, _) } or
TSomeCall() or
TReturn(DataFlowCallable c, DataFlowCall call) { reducedViableImplInReturn(c, call) }
cached
newtype TReturnPosition =
TReturnPosition0(DataFlowCallable c, ReturnKindExt kind) {
exists(ReturnNodeExt ret |
c = returnNodeGetEnclosingCallable(ret) and
kind = ret.getKind()
)
}
cached
newtype TLocalFlowCallContext =
TAnyLocalCall() or
TSpecificLocalCall(DataFlowCall call) { isUnreachableInCall(_, call) }
cached
newtype TReturnKindExt =
TValueReturn(ReturnKind kind) or
TParamUpdate(int pos) { exists(ParameterNode p | p.isParameterOf(_, pos)) }
cached
newtype TBooleanOption =
TBooleanNone() or
TBooleanSome(boolean b) { b = true or b = false }
cached
newtype TTypedContent = MkTypedContent(Content c, DataFlowType t) { store(_, c, _, _, t) }
cached
newtype TAccessPathFront =
TFrontNil(DataFlowType t) or
TFrontHead(TypedContent tc)
cached
newtype TAccessPathFrontOption =
TAccessPathFrontNone() or
TAccessPathFrontSome(AccessPathFront apf)
}
/**
* A `Node` at which a cast can occur such that the type should be checked.
*/
class CastingNode extends Node {
CastingNode() {
this instanceof ParameterNode or
this instanceof CastNode or
this instanceof OutNodeExt or
// For reads, `x.f`, we want to check that the tracked type after the read (which
// is obtained by popping the head of the access path stack) is compatible with
// the type of `x.f`.
readStep(_, _, this)
}
}
private predicate readStepWithTypes(
Node n1, DataFlowType container, Content c, Node n2, DataFlowType content
) {
readStep(n1, c, n2) and
container = getNodeType(n1) and
content = getNodeType(n2)
}
private newtype TReadStepTypesOption =
TReadStepTypesNone() or
TReadStepTypesSome(DataFlowType container, Content c, DataFlowType content) {
readStepWithTypes(_, container, c, _, content)
}
private class ReadStepTypesOption extends TReadStepTypesOption {
predicate isSome() { this instanceof TReadStepTypesSome }
DataFlowType getContainerType() { this = TReadStepTypesSome(result, _, _) }
Content getContent() { this = TReadStepTypesSome(_, result, _) }
DataFlowType getContentType() { this = TReadStepTypesSome(_, _, result) }
string toString() { if this.isSome() then result = "Some(..)" else result = "None()" }
}
/**
* A call context to restrict the targets of virtual dispatch, prune local flow,
* and match the call sites of flow into a method with flow out of a method.
*
* There are four cases:
* - `TAnyCallContext()` : No restrictions on method flow.
* - `TSpecificCall(DataFlowCall call)` : Flow entered through the
* given `call`. This call improves the set of viable
* dispatch targets for at least one method call in the current callable
* or helps prune unreachable nodes in the current callable.
* - `TSomeCall()` : Flow entered through a parameter. The
* originating call does not improve the set of dispatch targets for any
* method call in the current callable and was therefore not recorded.
* - `TReturn(Callable c, DataFlowCall call)` : Flow reached `call` from `c` and
* this dispatch target of `call` implies a reduced set of dispatch origins
* to which data may flow if it should reach a `return` statement.
*/
abstract class CallContext extends TCallContext {
abstract string toString();
/** Holds if this call context is relevant for `callable`. */
abstract predicate relevantFor(DataFlowCallable callable);
}
abstract class CallContextNoCall extends CallContext { }
class CallContextAny extends CallContextNoCall, TAnyCallContext {
override string toString() { result = "CcAny" }
override predicate relevantFor(DataFlowCallable callable) { any() }
}
abstract class CallContextCall extends CallContext {
/** Holds if this call context may be `call`. */
bindingset[call]
abstract predicate matchesCall(DataFlowCall call);
}
class CallContextSpecificCall extends CallContextCall, TSpecificCall {
override string toString() {
exists(DataFlowCall call | this = TSpecificCall(call) | result = "CcCall(" + call + ")")
}
override predicate relevantFor(DataFlowCallable callable) {
recordDataFlowCallSite(getCall(), callable)
}
override predicate matchesCall(DataFlowCall call) { call = this.getCall() }
DataFlowCall getCall() { this = TSpecificCall(result) }
}
class CallContextSomeCall extends CallContextCall, TSomeCall {
override string toString() { result = "CcSomeCall" }
override predicate relevantFor(DataFlowCallable callable) {
exists(ParameterNode p | p.getEnclosingCallable() = callable)
}
override predicate matchesCall(DataFlowCall call) { any() }
}
class CallContextReturn extends CallContextNoCall, TReturn {
override string toString() {
exists(DataFlowCall call | this = TReturn(_, call) | result = "CcReturn(" + call + ")")
}
override predicate relevantFor(DataFlowCallable callable) {
exists(DataFlowCall call | this = TReturn(_, call) and call.getEnclosingCallable() = callable)
}
}
/**
* A call context that is relevant for pruning local flow.
*/
abstract class LocalCallContext extends TLocalFlowCallContext {
abstract string toString();
/** Holds if this call context is relevant for `callable`. */
abstract predicate relevantFor(DataFlowCallable callable);
}
class LocalCallContextAny extends LocalCallContext, TAnyLocalCall {
override string toString() { result = "LocalCcAny" }
override predicate relevantFor(DataFlowCallable callable) { any() }
}
class LocalCallContextSpecificCall extends LocalCallContext, TSpecificLocalCall {
LocalCallContextSpecificCall() { this = TSpecificLocalCall(call) }
DataFlowCall call;
DataFlowCall getCall() { result = call }
override string toString() { result = "LocalCcCall(" + call + ")" }
override predicate relevantFor(DataFlowCallable callable) { relevantLocalCCtx(call, callable) }
}
private predicate relevantLocalCCtx(DataFlowCall call, DataFlowCallable callable) {
exists(Node n | n.getEnclosingCallable() = callable and isUnreachableInCall(n, call))
}
/**
* Gets the local call context given the call context and the callable that
* the contexts apply to.
*/
LocalCallContext getLocalCallContext(CallContext ctx, DataFlowCallable callable) {
ctx.relevantFor(callable) and
if relevantLocalCCtx(ctx.(CallContextSpecificCall).getCall(), callable)
then result.(LocalCallContextSpecificCall).getCall() = ctx.(CallContextSpecificCall).getCall()
else result instanceof LocalCallContextAny
}
/**
* A node from which flow can return to the caller. This is either a regular
* `ReturnNode` or a `PostUpdateNode` corresponding to the value of a parameter.
*/
class ReturnNodeExt extends Node {
ReturnNodeExt() {
this instanceof ReturnNode or
parameterValueFlowsToPreUpdate(_, this)
}
/** Gets the kind of this returned value. */
ReturnKindExt getKind() {
result = TValueReturn(this.(ReturnNode).getKind())
or
exists(ParameterNode p, int pos |
parameterValueFlowsToPreUpdate(p, this) and
p.isParameterOf(_, pos) and
result = TParamUpdate(pos)
)
}
}
/**
* A node to which data can flow from a call. Either an ordinary out node
* or a post-update node associated with a call argument.
*/
class OutNodeExt extends Node {
OutNodeExt() {
this instanceof OutNode
or
this.(PostUpdateNode).getPreUpdateNode() instanceof ArgumentNode
}
}
/**
* An extended return kind. A return kind describes how data can be returned
* from a callable. This can either be through a returned value or an updated
* parameter.
*/
abstract class ReturnKindExt extends TReturnKindExt {
/** Gets a textual representation of this return kind. */
abstract string toString();
/** Gets a node corresponding to data flow out of `call`. */
abstract OutNodeExt getAnOutNode(DataFlowCall call);
}
class ValueReturnKind extends ReturnKindExt, TValueReturn {
private ReturnKind kind;
ValueReturnKind() { this = TValueReturn(kind) }
ReturnKind getKind() { result = kind }
override string toString() { result = kind.toString() }
override OutNodeExt getAnOutNode(DataFlowCall call) {
result = getAnOutNode(call, this.getKind())
}
}
class ParamUpdateReturnKind extends ReturnKindExt, TParamUpdate {
private int pos;
ParamUpdateReturnKind() { this = TParamUpdate(pos) }
int getPosition() { result = pos }
override string toString() { result = "param update " + pos }
override OutNodeExt getAnOutNode(DataFlowCall call) {
exists(ArgumentNode arg |
result.(PostUpdateNode).getPreUpdateNode() = arg and
arg.argumentOf(call, this.getPosition())
)
}
}
/** A callable tagged with a relevant return kind. */
class ReturnPosition extends TReturnPosition0 {
private DataFlowCallable c;
private ReturnKindExt kind;
ReturnPosition() { this = TReturnPosition0(c, kind) }
/** Gets the callable. */
DataFlowCallable getCallable() { result = c }
/** Gets the return kind. */
ReturnKindExt getKind() { result = kind }
/** Gets a textual representation of this return position. */
string toString() { result = "[" + kind + "] " + c }
}
pragma[noinline]
private DataFlowCallable returnNodeGetEnclosingCallable(ReturnNodeExt ret) {
result = ret.getEnclosingCallable()
}
pragma[noinline]
private ReturnPosition getReturnPosition0(ReturnNodeExt ret, ReturnKindExt kind) {
result.getCallable() = returnNodeGetEnclosingCallable(ret) and
kind = result.getKind()
}
pragma[noinline]
ReturnPosition getReturnPosition(ReturnNodeExt ret) {
result = getReturnPosition0(ret, ret.getKind())
}
bindingset[cc, callable]
predicate resolveReturn(CallContext cc, DataFlowCallable callable, DataFlowCall call) {
cc instanceof CallContextAny and callable = viableCallable(call)
or
exists(DataFlowCallable c0, DataFlowCall call0 |
call0.getEnclosingCallable() = callable and
cc = TReturn(c0, call0) and
c0 = prunedViableImplInCallContextReverse(call0, call)
)
}
bindingset[call, cc]
DataFlowCallable resolveCall(DataFlowCall call, CallContext cc) {
exists(DataFlowCall ctx | cc = TSpecificCall(ctx) |
if reducedViableImplInCallContext(call, _, ctx)
then result = prunedViableImplInCallContext(call, ctx)
else result = viableCallable(call)
)
or
result = viableCallable(call) and cc instanceof CallContextSomeCall
or
result = viableCallable(call) and cc instanceof CallContextAny
or
result = viableCallable(call) and cc instanceof CallContextReturn
}
predicate read = readStep/3;
/** An optional Boolean value. */
class BooleanOption extends TBooleanOption {
string toString() {
this = TBooleanNone() and result = "<none>"
or
this = TBooleanSome(any(boolean b | result = b.toString()))
}
}
/** Content tagged with the type of a containing object. */
class TypedContent extends MkTypedContent {
private Content c;
private DataFlowType t;
TypedContent() { this = MkTypedContent(c, t) }
/** Gets the content. */
Content getContent() { result = c }
/** Gets the container type. */
DataFlowType getContainerType() { result = t }
/** Gets a textual representation of this content. */
string toString() { result = c.toString() }
}
/**
* The front of an access path. This is either a head or a nil.
*/
abstract class AccessPathFront extends TAccessPathFront {
abstract string toString();
abstract DataFlowType getType();
abstract boolean toBoolNonEmpty();
TypedContent getHead() { this = TFrontHead(result) }
predicate isClearedAt(Node n) { clearsContent(n, getHead().getContent()) }
}
class AccessPathFrontNil extends AccessPathFront, TFrontNil {
private DataFlowType t;
AccessPathFrontNil() { this = TFrontNil(t) }
override string toString() { result = ppReprType(t) }
override DataFlowType getType() { result = t }
override boolean toBoolNonEmpty() { result = false }
}
class AccessPathFrontHead extends AccessPathFront, TFrontHead {
private TypedContent tc;
AccessPathFrontHead() { this = TFrontHead(tc) }
override string toString() { result = tc.toString() }
override DataFlowType getType() { result = tc.getContainerType() }
override boolean toBoolNonEmpty() { result = true }
}
/** An optional access path front. */
class AccessPathFrontOption extends TAccessPathFrontOption {
string toString() {
this = TAccessPathFrontNone() and result = "<none>"
or
this = TAccessPathFrontSome(any(AccessPathFront apf | result = apf.toString()))
}
}