Merge branch 'github:main' into jorgectf/python/ldapinsecureauth

This commit is contained in:
Jorge
2021-07-22 18:49:51 +02:00
committed by GitHub
2523 changed files with 221327 additions and 31437 deletions

View File

@@ -0,0 +1,33 @@
/**
* @name Clear-text logging of sensitive information
* @description OLD QUERY: Logging sensitive information without encryption or hashing can
* expose it to an attacker.
* @kind path-problem
* @problem.severity error
* @id py/old/clear-text-logging-sensitive-data
* @deprecated
*/
import python
import semmle.python.security.Paths
import semmle.python.dataflow.TaintTracking
import semmle.python.security.SensitiveData
import semmle.python.security.ClearText
class CleartextLoggingConfiguration extends TaintTracking::Configuration {
CleartextLoggingConfiguration() { this = "ClearTextLogging" }
override predicate isSource(DataFlow::Node src, TaintKind kind) {
src.asCfgNode().(SensitiveData::Source).isSourceOf(kind)
}
override predicate isSink(DataFlow::Node sink, TaintKind kind) {
sink.asCfgNode() instanceof ClearTextLogging::Sink and
kind instanceof SensitiveData
}
}
from CleartextLoggingConfiguration config, TaintedPathSource source, TaintedPathSink sink
where config.hasFlowPath(source, sink)
select sink.getSink(), source, sink, "Sensitive data returned by $@ is logged here.",
source.getSource(), source.getCfgNode().(SensitiveData::Source).repr()

View File

@@ -0,0 +1,33 @@
/**
* @name Clear-text storage of sensitive information
* @description OLD QUERY: Sensitive information stored without encryption or hashing can expose it to an
* attacker.
* @kind path-problem
* @problem.severity error
* @id py/old/clear-text-storage-sensitive-data
* @deprecated
*/
import python
import semmle.python.security.Paths
import semmle.python.dataflow.TaintTracking
import semmle.python.security.SensitiveData
import semmle.python.security.ClearText
class CleartextStorageConfiguration extends TaintTracking::Configuration {
CleartextStorageConfiguration() { this = "ClearTextStorage" }
override predicate isSource(DataFlow::Node src, TaintKind kind) {
src.asCfgNode().(SensitiveData::Source).isSourceOf(kind)
}
override predicate isSink(DataFlow::Node sink, TaintKind kind) {
sink.asCfgNode() instanceof ClearTextStorage::Sink and
kind instanceof SensitiveData
}
}
from CleartextStorageConfiguration config, TaintedPathSource source, TaintedPathSink sink
where config.hasFlowPath(source, sink)
select sink.getSink(), source, sink, "Sensitive data from $@ is stored here.", source.getSource(),
source.getCfgNode().(SensitiveData::Source).repr()

View File

@@ -1,28 +0,0 @@
from django.conf.urls import url
from clickhouse_driver import Client
from clickhouse_driver import connect
from aioch import Client as aiochClient
class MyClient(Client):
def dummy(self):
return None
def show_user(request, username):
# BAD -- Untrusted user input is directly injected into the sql query using async library 'aioch'
aclient = aiochClient("localhost")
progress = await aclient.execute_with_progress("SELECT * FROM users WHERE username = '%s'" % username)
# BAD -- Untrusted user input is directly injected into the sql query using native client of library 'clickhouse_driver'
Client('localhost').execute("SELECT * FROM users WHERE username = '%s'" % username)
# GOOD -- query uses prepared statements
query = "SELECT * FROM users WHERE username = %(username)s"
Client('localhost').execute(query, {"username": username})
# BAD -- PEP249 interface
conn = connect('clickhouse://localhost')
cursor = conn.cursor()
cursor.execute("SELECT * FROM users WHERE username = '%s'" % username)
urlpatterns = [url(r'^users/(?P<username>[^/]+)$', show_user)]

View File

@@ -1,59 +0,0 @@
<!DOCTYPE qhelp PUBLIC
"-//Semmle//qhelp//EN"
"qhelp.dtd">
<qhelp>
<overview>
<p>
If a database query (such as a SQL or NoSQL query) is built from
user-provided data without sufficient sanitization, a user
may be able to run malicious database queries.
</p>
</overview>
<recommendation>
<p>
Most database connector libraries offer a way of safely
embedding untrusted data into a query by means of query parameters
or prepared statements.
</p>
</recommendation>
<example>
<p>
In the following snippet, a user is fetched from a <code>ClickHouse</code> database
using five different queries. In the "BAD" cases the query is built directly from user-controlled data.
In the "GOOD" case the user-controlled data is safely embedded into the query by using query parameters.
</p>
<p>
In the first case, the query executed via aioch Client. aioch - is a module
for asynchronous queries to database.
</p>
<p>
In the second and third cases, the connection is established via `Client` class.
This class implement different method to execute a query.
</p>
<p>
In the forth case, good pattern is presented. Query parameters are send through
second dict-like argument.
</p>
<p>
In the fifth case, there is example of PEP249 interface usage.
</p>
<p>
In the sixth case, there is custom Class usge which is a subclass of default Client.
</p>
<sample src="ClickHouseSQLInjection.py" />
</example>
<references>
<li>Wikipedia: <a href="https://en.wikipedia.org/wiki/SQL_injection">SQL injection</a>.</li>
<li>OWASP: <a href="https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html">SQL Injection Prevention Cheat Sheet</a>.</li>
</references>
</qhelp>

View File

@@ -1,22 +0,0 @@
/**
* @id py/yandex/clickhouse-sql-injection
* @name Clickhouse SQL query built from user-controlled sources
* @description Building a SQL query from user-controlled sources is vulnerable to insertion of
* malicious SQL code by the user.
* @kind path-problem
* @problem.severity error
* @precision high
* @tags security
* external/cwe/cwe-089
* external/owasp/owasp-a1
*/
import python
import experimental.semmle.python.frameworks.ClickHouseDriver
import semmle.python.security.dataflow.SqlInjection
import DataFlow::PathGraph
from SQLInjectionConfiguration config, DataFlow::PathNode source, DataFlow::PathNode sink
where config.hasFlowPath(source, sink)
select sink.getNode(), source, sink, "This SQL query depends on $@.", source.getNode(),
"a user-provided value"

View File

@@ -0,0 +1,6 @@
import python
import semmle.python.security.performance.SuperlinearBackTracking
from PolynomialBackTrackingTerm t
where t.getLocation().getFile().getBaseName() = "KnownCVEs.py"
select t.getRegex(), t, t.getReason()

View File

@@ -0,0 +1,108 @@
<!DOCTYPE qhelp PUBLIC
"-//Semmle//qhelp//EN"
"qhelp.dtd">
<qhelp>
<include src="ReDoSIntroduction.inc.qhelp" />
<example>
<p>
Consider this use of a regular expression, which removes
all leading and trailing whitespace in a string:
</p>
<sample language="python">
re.sub(r"^\s+|\s+$", "", text) # BAD
</sample>
<p>
The sub-expression <code>"\s+$"</code> will match the
whitespace characters in <code>text</code> from left to right, but it
can start matching anywhere within a whitespace sequence. This is
problematic for strings that do <strong>not</strong> end with a whitespace
character. Such a string will force the regular expression engine to
process each whitespace sequence once per whitespace character in the
sequence.
</p>
<p>
This ultimately means that the time cost of trimming a
string is quadratic in the length of the string. So a string like
<code>"a b"</code> will take milliseconds to process, but a similar
string with a million spaces instead of just one will take several
minutes.
</p>
<p>
Avoid this problem by rewriting the regular expression to
not contain the ambiguity about when to start matching whitespace
sequences. For instance, by using a negative look-behind
(<code>^\s+|(?&lt;!\s)\s+$</code>), or just by using the built-in strip
method (<code>text.strip()</code>).
</p>
<p>
Note that the sub-expression <code>"^\s+"</code> is
<strong>not</strong> problematic as the <code>^</code> anchor restricts
when that sub-expression can start matching, and as the regular
expression engine matches from left to right.
</p>
</example>
<example>
<p>
As a similar, but slightly subtler problem, consider the
regular expression that matches lines with numbers, possibly written
using scientific notation:
</p>
<sample language="python">
^0\.\d+E?\d+$ # BAD
</sample>
<p>
The problem with this regular expression is in the
sub-expression <code>\d+E?\d+</code> because the second
<code>\d+</code> can start matching digits anywhere after the first
match of the first <code>\d+</code> if there is no <code>E</code> in
the input string.
</p>
<p>
This is problematic for strings that do <strong>not</strong>
end with a digit. Such a string will force the regular expression
engine to process each digit sequence once per digit in the sequence,
again leading to a quadratic time complexity.
</p>
<p>
To make the processing faster, the regular expression
should be rewritten such that the two <code>\d+</code> sub-expressions
do not have overlapping matches: <code>^0\.\d+(E\d+)?$</code>.
</p>
</example>
<include src="ReDoSReferences.inc.qhelp"/>
</qhelp>

View File

@@ -0,0 +1,33 @@
/**
* @name Polynomial regular expression used on uncontrolled data
* @description A regular expression that can require polynomial time
* to match may be vulnerable to denial-of-service attacks.
* @kind path-problem
* @problem.severity warning
* @precision high
* @id py/polynomial-redos
* @tags security
* external/cwe/cwe-730
* external/cwe/cwe-400
*/
import python
import semmle.python.security.performance.SuperlinearBackTracking
import semmle.python.security.dataflow.PolynomialReDoS
import DataFlow::PathGraph
from
PolynomialReDoS::Configuration config, DataFlow::PathNode source, DataFlow::PathNode sink,
PolynomialReDoS::Sink sinkNode, PolynomialBackTrackingTerm regexp
where
config.hasFlowPath(source, sink) and
sinkNode = sink.getNode() and
regexp.getRootTerm() = sinkNode.getRegExp()
// not (
// source.getNode().(Source).getKind() = "url" and
// regexp.isAtEndLine()
// )
select sinkNode.getHighlight(), source, sink,
"This $@ that depends on $@ may run slow on strings " + regexp.getPrefixMessage() +
"with many repetitions of '" + regexp.getPumpString() + "'.", regexp, "regular expression",
source.getNode(), "a user-provided value"

View File

@@ -0,0 +1,34 @@
<!DOCTYPE qhelp PUBLIC
"-//Semmle//qhelp//EN"
"qhelp.dtd">
<qhelp>
<include src="ReDoSIntroduction.inc.qhelp" />
<example>
<p>
Consider this regular expression:
</p>
<sample language="python">
^_(__|.)+_$
</sample>
<p>
Its sub-expression <code>"(__|.)+?"</code> can match the string <code>"__"</code> either by the
first alternative <code>"__"</code> to the left of the <code>"|"</code> operator, or by two
repetitions of the second alternative <code>"."</code> to the right. Thus, a string consisting
of an odd number of underscores followed by some other character will cause the regular
expression engine to run for an exponential amount of time before rejecting the input.
</p>
<p>
This problem can be avoided by rewriting the regular expression to remove the ambiguity between
the two branches of the alternative inside the repetition:
</p>
<sample language="python">
^_(__|[^_])+_$
</sample>
</example>
<include src="ReDoSReferences.inc.qhelp"/>
</qhelp>

View File

@@ -0,0 +1,25 @@
/**
* @name Inefficient regular expression
* @description A regular expression that requires exponential time to match certain inputs
* can be a performance bottleneck, and may be vulnerable to denial-of-service
* attacks.
* @kind problem
* @problem.severity error
* @precision high
* @id py/redos
* @tags security
* external/cwe/cwe-730
* external/cwe/cwe-400
*/
import python
import semmle.python.security.performance.ExponentialBackTracking
from RegExpTerm t, string pump, State s, string prefixMsg
where
hasReDoSResult(t, pump, s, prefixMsg) and
// exclude verbose mode regexes for now
not t.getRegex().getAMode() = "VERBOSE"
select t,
"This part of the regular expression may cause exponential backtracking on strings " + prefixMsg +
"containing many repetitions of '" + pump + "'."

View File

@@ -0,0 +1,54 @@
<!DOCTYPE qhelp PUBLIC
"-//Semmle//qhelp//EN"
"qhelp.dtd">
<qhelp>
<overview>
<p>
Some regular expressions take a long time to match certain
input strings to the point where the time it takes to match a string
of length <i>n</i> is proportional to <i>n<sup>k</sup></i> or even
<i>2<sup>n</sup></i>. Such regular expressions can negatively affect
performance, or even allow a malicious user to perform a Denial of
Service ("DoS") attack by crafting an expensive input string for the
regular expression to match.
</p>
<p>
The regular expression engine provided by Python uses a backtracking non-deterministic finite
automata to implement regular expression matching. While this approach
is space-efficient and allows supporting advanced features like
capture groups, it is not time-efficient in general. The worst-case
time complexity of such an automaton can be polynomial or even
exponential, meaning that for strings of a certain shape, increasing
the input length by ten characters may make the automaton about 1000
times slower.
</p>
<p>
Typically, a regular expression is affected by this
problem if it contains a repetition of the form <code>r*</code> or
<code>r+</code> where the sub-expression <code>r</code> is ambiguous
in the sense that it can match some string in multiple ways. More
information about the precise circumstances can be found in the
references.
</p>
</overview>
<recommendation>
<p>
Modify the regular expression to remove the ambiguity, or
ensure that the strings matched with the regular expression are short
enough that the time-complexity does not matter.
</p>
</recommendation>
</qhelp>

View File

@@ -0,0 +1,16 @@
<!DOCTYPE qhelp PUBLIC
"-//Semmle//qhelp//EN"
"qhelp.dtd">
<qhelp>
<references>
<li>
OWASP:
<a href="https://www.owasp.org/index.php/Regular_expression_Denial_of_Service_-_ReDoS">Regular expression Denial of Service - ReDoS</a>.
</li>
<li>Wikipedia: <a href="https://en.wikipedia.org/wiki/ReDoS">ReDoS</a>.</li>
<li>Wikipedia: <a href="https://en.wikipedia.org/wiki/Time_complexity">Time complexity</a>.</li>
<li>James Kirrage, Asiri Rathnayake, Hayo Thielecke:
<a href="http://www.cs.bham.ac.uk/~hxt/research/reg-exp-sec.pdf">Static Analysis for Regular Expression Denial-of-Service Attack</a>.
</li>
</references>
</qhelp>

View File

@@ -199,3 +199,36 @@ class LDAPBind extends DataFlow::Node {
*/
predicate useSSL() { range.useSSL() }
}
/** Provides classes for modeling SQL sanitization libraries. */
module SQLEscape {
/**
* A data-flow node that collects functions that escape SQL statements.
*
* Extend this class to model new APIs. If you want to refine existing API models,
* extend `SQLEscape` instead.
*/
abstract class Range extends DataFlow::Node {
/**
* Gets the argument containing the raw SQL statement.
*/
abstract DataFlow::Node getAnInput();
}
}
/**
* A data-flow node that collects functions escaping SQL statements.
*
* Extend this class to refine existing API models. If you want to model new APIs,
* extend `SQLEscape::Range` instead.
*/
class SQLEscape extends DataFlow::Node {
SQLEscape::Range range;
SQLEscape() { this = range }
/**
* Gets the argument containing the raw SQL statement.
*/
DataFlow::Node getAnInput() { result = range.getAnInput() }
}

View File

@@ -1,85 +0,0 @@
/**
* Provides classes modeling security-relevant aspects of `clickhouse-driver` and `aioch` PyPI packages.
* See
* - https://pypi.org/project/clickhouse-driver/
* - https://pypi.org/project/aioch/
* - https://clickhouse-driver.readthedocs.io/en/latest/
*/
private import python
private import semmle.python.Concepts
private import semmle.python.ApiGraphs
private import semmle.python.frameworks.PEP249
/**
* Provides models for `clickhouse-driver` and `aioch` PyPI packages.
* See
* - https://pypi.org/project/clickhouse-driver/
* - https://pypi.org/project/aioch/
* - https://clickhouse-driver.readthedocs.io/en/latest/
*/
module ClickHouseDriver {
/** Gets a reference to the `clickhouse_driver` module. */
API::Node clickhouse_driver() { result = API::moduleImport("clickhouse_driver") }
/** Gets a reference to the `aioch` module. This module allows to make async db queries. */
API::Node aioch() { result = API::moduleImport("aioch") }
/**
* `clickhouse_driver` implements PEP249,
* providing ways to execute SQL statements against a database.
*/
class ClickHouseDriverPEP249 extends PEP249ModuleApiNode {
ClickHouseDriverPEP249() { this = clickhouse_driver() }
}
module Client {
/** Gets a reference to a Client call. */
private DataFlow::Node client_ref() {
result = clickhouse_driver().getMember("Client").getASubclass*().getAUse()
or
result = aioch().getMember("Client").getASubclass*().getAUse()
}
/** A direct instantiation of `clickhouse_driver.Client`. */
private class ClientInstantiation extends DataFlow::CallCfgNode {
ClientInstantiation() { this.getFunction() = client_ref() }
}
/** Gets a reference to an instance of `clickhouse_driver.Client`. */
private DataFlow::LocalSourceNode instance(DataFlow::TypeTracker t) {
t.start() and
result instanceof ClientInstantiation
or
exists(DataFlow::TypeTracker t2 | result = instance(t2).track(t2, t))
}
/** Gets a reference to an instance of `clickhouse_driver.Client`. */
DataFlow::Node instance() { instance(DataFlow::TypeTracker::end()).flowsTo(result) }
}
/** clickhouse_driver.Client execute methods */
private string execute_function() {
result in ["execute_with_progress", "execute", "execute_iter"]
}
/** Gets a reference to the `clickhouse_driver.Client.execute` method */
private DataFlow::LocalSourceNode clickhouse_execute(DataFlow::TypeTracker t) {
t.startInAttr(execute_function()) and
result = Client::instance()
or
exists(DataFlow::TypeTracker t2 | result = clickhouse_execute(t2).track(t2, t))
}
/** Gets a reference to the `clickhouse_driver.Client.execute` method */
DataFlow::Node clickhouse_execute() {
clickhouse_execute(DataFlow::TypeTracker::end()).flowsTo(result)
}
/** A call to the `clickhouse_driver.Client.execute` method */
private class ExecuteCall extends SqlExecution::Range, DataFlow::CallCfgNode {
ExecuteCall() { this.getFunction() = clickhouse_execute() }
override DataFlow::Node getSql() { result.asCfgNode() = node.getArg(0) }
}
}

View File

@@ -26,7 +26,7 @@ private module LDAP {
API::Node ldapInitialize() { result = ldap().getMember("initialize") }
/** Gets a reference to a `ldap` operation. */
private DataFlow::LocalSourceNode ldapOperation(DataFlow::TypeTracker t) {
private DataFlow::TypeTrackingNode ldapOperation(DataFlow::TypeTracker t) {
t.start() and
result.(DataFlow::AttrRead).getObject().getALocalSource() = ldapInitialize().getACall()
or

View File

@@ -0,0 +1,148 @@
/**
* Provides classes modeling security-relevant aspects of the 'SqlAlchemy' package.
* See https://pypi.org/project/SQLAlchemy/.
*/
private import python
private import semmle.python.dataflow.new.DataFlow
private import semmle.python.dataflow.new.TaintTracking
private import semmle.python.ApiGraphs
private import semmle.python.Concepts
private import experimental.semmle.python.Concepts
private module SqlAlchemy {
/**
* Returns an instantization of a SqlAlchemy Session object.
* See https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.Session and
* https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.sessionmaker
*/
private API::Node getSqlAlchemySessionInstance() {
result = API::moduleImport("sqlalchemy.orm").getMember("Session").getReturn() or
result = API::moduleImport("sqlalchemy.orm").getMember("sessionmaker").getReturn().getReturn()
}
/**
* Returns an instantization of a SqlAlchemy Engine object.
* See https://docs.sqlalchemy.org/en/14/core/engines.html#sqlalchemy.create_engine
*/
private API::Node getSqlAlchemyEngineInstance() {
result = API::moduleImport("sqlalchemy").getMember("create_engine").getReturn()
}
/**
* Returns an instantization of a SqlAlchemy Query object.
* See https://docs.sqlalchemy.org/en/14/orm/query.html?highlight=query#sqlalchemy.orm.Query
*/
private API::Node getSqlAlchemyQueryInstance() {
result = getSqlAlchemySessionInstance().getMember("query").getReturn()
}
/**
* A call to `execute` meant to execute an SQL expression
* See the following links:
* - https://docs.sqlalchemy.org/en/14/core/connections.html?highlight=execute#sqlalchemy.engine.Connection.execute
* - https://docs.sqlalchemy.org/en/14/core/connections.html?highlight=execute#sqlalchemy.engine.Engine.execute
* - https://docs.sqlalchemy.org/en/14/orm/session_api.html?highlight=execute#sqlalchemy.orm.Session.execute
*/
private class SqlAlchemyExecuteCall extends DataFlow::CallCfgNode, SqlExecution::Range {
SqlAlchemyExecuteCall() {
// new way
this = getSqlAlchemySessionInstance().getMember("execute").getACall() or
this =
getSqlAlchemyEngineInstance()
.getMember(["connect", "begin"])
.getReturn()
.getMember("execute")
.getACall()
}
override DataFlow::Node getSql() { result = this.getArg(0) }
}
/**
* A call to `scalar` meant to execute an SQL expression
* See https://docs.sqlalchemy.org/en/14/orm/session_api.html#sqlalchemy.orm.Session.scalar and
* https://docs.sqlalchemy.org/en/14/core/connections.html?highlight=scalar#sqlalchemy.engine.Engine.scalar
*/
private class SqlAlchemyScalarCall extends DataFlow::CallCfgNode, SqlExecution::Range {
SqlAlchemyScalarCall() {
this =
[getSqlAlchemySessionInstance(), getSqlAlchemyEngineInstance()]
.getMember("scalar")
.getACall()
}
override DataFlow::Node getSql() { result = this.getArg(0) }
}
/**
* A call on a Query object
* See https://docs.sqlalchemy.org/en/14/orm/query.html?highlight=query#sqlalchemy.orm.Query
*/
private class SqlAlchemyQueryCall extends DataFlow::CallCfgNode, SqlExecution::Range {
SqlAlchemyQueryCall() {
this =
getSqlAlchemyQueryInstance()
.getMember(any(SqlAlchemyVulnerableMethodNames methodName))
.getACall()
}
override DataFlow::Node getSql() { result = this.getArg(0) }
}
/**
* This class represents a list of methods vulnerable to sql injection.
*
* See https://github.com/jty-team/codeql/pull/2#issue-611592361
*/
private class SqlAlchemyVulnerableMethodNames extends string {
SqlAlchemyVulnerableMethodNames() { this in ["filter", "filter_by", "group_by", "order_by"] }
}
/**
* Additional taint-steps for `sqlalchemy.text()`
*
* See https://docs.sqlalchemy.org/en/14/core/sqlelement.html#sqlalchemy.sql.expression.text
* See https://docs.sqlalchemy.org/en/14/core/sqlelement.html#sqlalchemy.sql.expression.TextClause
*/
class SqlAlchemyTextAdditionalTaintSteps extends TaintTracking::AdditionalTaintStep {
override predicate step(DataFlow::Node nodeFrom, DataFlow::Node nodeTo) {
exists(DataFlow::CallCfgNode call |
(
call = API::moduleImport("sqlalchemy").getMember("text").getACall()
or
call = API::moduleImport("sqlalchemy").getMember("sql").getMember("text").getACall()
or
call =
API::moduleImport("sqlalchemy")
.getMember("sql")
.getMember("expression")
.getMember("text")
.getACall()
or
call =
API::moduleImport("sqlalchemy")
.getMember("sql")
.getMember("expression")
.getMember("TextClause")
.getACall()
) and
nodeFrom in [call.getArg(0), call.getArgByName("text")] and
nodeTo = call
)
}
}
/**
* Gets a reference to `sqlescapy.sqlescape`.
*
* See https://pypi.org/project/sqlescapy/
*/
class SQLEscapySanitizerCall extends DataFlow::CallCfgNode, SQLEscape::Range {
SQLEscapySanitizerCall() {
this = API::moduleImport("sqlescapy").getMember("sqlescape").getACall()
}
override DataFlow::Node getAnInput() { result = this.getArg(0) }
}
}

View File

@@ -64,15 +64,14 @@ private module Re {
*
* See https://docs.python.org/3/library/re.html#regular-expression-objects
*/
private class CompiledRegex extends DataFlow::CallCfgNode, RegexExecution::Range {
private class CompiledRegex extends DataFlow::MethodCallNode, RegexExecution::Range {
DataFlow::Node regexNode;
CompiledRegex() {
exists(DataFlow::CallCfgNode patternCall, DataFlow::AttrRead reMethod |
this.getFunction() = reMethod and
exists(DataFlow::MethodCallNode patternCall |
patternCall = API::moduleImport("re").getMember("compile").getACall() and
patternCall.flowsTo(reMethod.getObject()) and
reMethod.getAttributeName() instanceof RegexExecutionMethods and
patternCall.flowsTo(this.getObject()) and
this.getMethodName() instanceof RegexExecutionMethods and
regexNode = patternCall.getArg(0)
)
}