C++: Stop caching raw IR construction predicates

These predicates are only used within the new single IR stage, so there's no need to cache them beyond that. RA diffs are trivial. Where previously many of the predicate on `Instruction` were inline wrappers around cached predicates from `IRConstruction`, now the predicates from `IRConstruction` get inlined into the `Instruction` predicates, and the `Instruction` predicates get materialized. The net amount of work is the same, but now it's not getting cached unnecessarily.
This commit is contained in:
Dave Bartolomeo
2020-06-17 09:47:48 -04:00
parent 8e977dc6bf
commit e85cc0b0c6

View File

@@ -169,234 +169,213 @@ module Raw {
}
}
import Cached
class TStageInstruction = TRawInstruction;
cached
private module Cached {
class TStageInstruction = TRawInstruction;
predicate hasInstruction(TRawInstruction instr) { any() }
cached
predicate hasInstruction(TRawInstruction instr) { any() }
predicate hasModeledMemoryResult(Instruction instruction) { none() }
cached
predicate hasModeledMemoryResult(Instruction instruction) { none() }
predicate hasConflatedMemoryResult(Instruction instruction) {
instruction instanceof AliasedDefinitionInstruction
or
instruction.getOpcode() instanceof Opcode::InitializeNonLocal
}
cached
predicate hasConflatedMemoryResult(Instruction instruction) {
instruction instanceof AliasedDefinitionInstruction
or
instruction.getOpcode() instanceof Opcode::InitializeNonLocal
}
Instruction getRegisterOperandDefinition(Instruction instruction, RegisterOperandTag tag) {
result =
getInstructionTranslatedElement(instruction)
.getInstructionRegisterOperand(getInstructionTag(instruction), tag)
}
cached
Instruction getRegisterOperandDefinition(Instruction instruction, RegisterOperandTag tag) {
result =
getInstructionTranslatedElement(instruction)
.getInstructionRegisterOperand(getInstructionTag(instruction), tag)
}
Instruction getMemoryOperandDefinition(
Instruction instruction, MemoryOperandTag tag, Overlap overlap
) {
none()
}
cached
Instruction getMemoryOperandDefinition(
Instruction instruction, MemoryOperandTag tag, Overlap overlap
) {
none()
}
/** Gets a non-phi instruction that defines an operand of `instr`. */
private Instruction getNonPhiOperandDef(Instruction instr) {
result = getRegisterOperandDefinition(instr, _)
or
result = getMemoryOperandDefinition(instr, _, _)
}
/** Gets a non-phi instruction that defines an operand of `instr`. */
private Instruction getNonPhiOperandDef(Instruction instr) {
result = getRegisterOperandDefinition(instr, _)
or
result = getMemoryOperandDefinition(instr, _, _)
}
/**
* Gets a non-phi instruction that defines an operand of `instr` but only if
* both `instr` and the result have neighbor on the other side of the edge
* between them. This is a necessary condition for being in a cycle, and it
* removes about two thirds of the tuples that would otherwise be in this
* predicate.
*/
private Instruction getNonPhiOperandDefOfIntermediate(Instruction instr) {
result = getNonPhiOperandDef(instr) and
exists(getNonPhiOperandDef(result)) and
instr = getNonPhiOperandDef(_)
}
/**
* Gets a non-phi instruction that defines an operand of `instr` but only if
* both `instr` and the result have neighbor on the other side of the edge
* between them. This is a necessary condition for being in a cycle, and it
* removes about two thirds of the tuples that would otherwise be in this
* predicate.
*/
private Instruction getNonPhiOperandDefOfIntermediate(Instruction instr) {
result = getNonPhiOperandDef(instr) and
exists(getNonPhiOperandDef(result)) and
instr = getNonPhiOperandDef(_)
}
/**
* Holds if `instr` is part of a cycle in the operand graph that doesn't go
* through a phi instruction and therefore should be impossible.
*
* If such cycles are present, either due to a programming error in the IR
* generation or due to a malformed database, it can cause infinite loops in
* analyses that assume a cycle-free graph of non-phi operands. Therefore it's
* better to remove these operands than to leave cycles in the operand graph.
*/
pragma[noopt]
predicate isInCycle(Instruction instr) {
instr instanceof Instruction and
getNonPhiOperandDefOfIntermediate+(instr) = instr
}
/**
* Holds if `instr` is part of a cycle in the operand graph that doesn't go
* through a phi instruction and therefore should be impossible.
*
* If such cycles are present, either due to a programming error in the IR
* generation or due to a malformed database, it can cause infinite loops in
* analyses that assume a cycle-free graph of non-phi operands. Therefore it's
* better to remove these operands than to leave cycles in the operand graph.
*/
pragma[noopt]
cached
predicate isInCycle(Instruction instr) {
instr instanceof Instruction and
getNonPhiOperandDefOfIntermediate+(instr) = instr
}
CppType getInstructionOperandType(Instruction instruction, TypedOperandTag tag) {
// For all `LoadInstruction`s, the operand type of the `LoadOperand` is the same as
// the result type of the load.
tag instanceof LoadOperandTag and
result = instruction.(LoadInstruction).getResultLanguageType()
or
not instruction instanceof LoadInstruction and
result =
getInstructionTranslatedElement(instruction)
.getInstructionMemoryOperandType(getInstructionTag(instruction), tag)
}
cached
CppType getInstructionOperandType(Instruction instruction, TypedOperandTag tag) {
// For all `LoadInstruction`s, the operand type of the `LoadOperand` is the same as
// the result type of the load.
tag instanceof LoadOperandTag and
result = instruction.(LoadInstruction).getResultLanguageType()
or
not instruction instanceof LoadInstruction and
result =
getInstructionTranslatedElement(instruction)
.getInstructionMemoryOperandType(getInstructionTag(instruction), tag)
}
Instruction getPhiOperandDefinition(
PhiInstruction instruction, IRBlock predecessorBlock, Overlap overlap
) {
none()
}
cached
Instruction getPhiOperandDefinition(
PhiInstruction instruction, IRBlock predecessorBlock, Overlap overlap
) {
none()
}
Instruction getPhiInstructionBlockStart(PhiInstruction instr) { none() }
cached
Instruction getPhiInstructionBlockStart(PhiInstruction instr) { none() }
Instruction getInstructionSuccessor(Instruction instruction, EdgeKind kind) {
result =
getInstructionTranslatedElement(instruction)
.getInstructionSuccessor(getInstructionTag(instruction), kind)
}
cached
Instruction getInstructionSuccessor(Instruction instruction, EdgeKind kind) {
result =
getInstructionTranslatedElement(instruction)
.getInstructionSuccessor(getInstructionTag(instruction), kind)
}
/**
* Holds if the CFG edge (`sourceElement`, `sourceTag`) ---`kind`-->
* `targetInstruction` is a back edge under the condition that
* `requiredAncestor` is an ancestor of `sourceElement`.
*/
private predicate backEdgeCandidate(
TranslatedElement sourceElement, InstructionTag sourceTag, TranslatedElement requiredAncestor,
Instruction targetInstruction, EdgeKind kind
) {
// While loop:
// Any edge from within the body of the loop to the condition of the loop
// is a back edge. This includes edges from `continue` and the fall-through
// edge(s) after the last instruction(s) in the body.
exists(TranslatedWhileStmt s |
targetInstruction = s.getFirstConditionInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
/**
* Holds if the CFG edge (`sourceElement`, `sourceTag`) ---`kind`-->
* `targetInstruction` is a back edge under the condition that
* `requiredAncestor` is an ancestor of `sourceElement`.
*/
private predicate backEdgeCandidate(
TranslatedElement sourceElement, InstructionTag sourceTag, TranslatedElement requiredAncestor,
Instruction targetInstruction, EdgeKind kind
) {
// While loop:
// Any edge from within the body of the loop to the condition of the loop
// is a back edge. This includes edges from `continue` and the fall-through
// edge(s) after the last instruction(s) in the body.
exists(TranslatedWhileStmt s |
targetInstruction = s.getFirstConditionInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
requiredAncestor = s.getBody()
)
or
// Do-while loop:
// The back edge should be the edge(s) from the condition to the
// body. This ensures that it's the back edge that will be pruned in a `do
// { ... } while (0)` statement. Note that all `continue` statements in a
// do-while loop produce forward edges.
exists(TranslatedDoStmt s |
targetInstruction = s.getBody().getFirstInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
requiredAncestor = s.getCondition()
)
or
// For loop:
// Any edge from within the body or update of the loop to the condition of
// the loop is a back edge. When there is no loop update expression, this
// includes edges from `continue` and the fall-through edge(s) after the
// last instruction(s) in the body. A for loop may not have a condition, in
// which case `getFirstConditionInstruction` returns the body instead.
exists(TranslatedForStmt s |
targetInstruction = s.getFirstConditionInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
(
requiredAncestor = s.getUpdate()
or
not exists(s.getUpdate()) and
requiredAncestor = s.getBody()
)
or
// Do-while loop:
// The back edge should be the edge(s) from the condition to the
// body. This ensures that it's the back edge that will be pruned in a `do
// { ... } while (0)` statement. Note that all `continue` statements in a
// do-while loop produce forward edges.
exists(TranslatedDoStmt s |
targetInstruction = s.getBody().getFirstInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
requiredAncestor = s.getCondition()
)
or
// For loop:
// Any edge from within the body or update of the loop to the condition of
// the loop is a back edge. When there is no loop update expression, this
// includes edges from `continue` and the fall-through edge(s) after the
// last instruction(s) in the body. A for loop may not have a condition, in
// which case `getFirstConditionInstruction` returns the body instead.
exists(TranslatedForStmt s |
targetInstruction = s.getFirstConditionInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
(
requiredAncestor = s.getUpdate()
or
not exists(s.getUpdate()) and
requiredAncestor = s.getBody()
)
)
or
// Range-based for loop:
// Any edge from within the update of the loop to the condition of
// the loop is a back edge.
exists(TranslatedRangeBasedForStmt s |
targetInstruction = s.getCondition().getFirstInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
requiredAncestor = s.getUpdate()
)
}
)
or
// Range-based for loop:
// Any edge from within the update of the loop to the condition of
// the loop is a back edge.
exists(TranslatedRangeBasedForStmt s |
targetInstruction = s.getCondition().getFirstInstruction() and
targetInstruction = sourceElement.getInstructionSuccessor(sourceTag, kind) and
requiredAncestor = s.getUpdate()
)
}
private predicate jumpSourceHasAncestor(TranslatedElement jumpSource, TranslatedElement ancestor) {
backEdgeCandidate(jumpSource, _, _, _, _) and
ancestor = jumpSource
or
// For performance, we don't want a fastTC here
jumpSourceHasAncestor(jumpSource, ancestor.getAChild())
}
private predicate jumpSourceHasAncestor(TranslatedElement jumpSource, TranslatedElement ancestor) {
backEdgeCandidate(jumpSource, _, _, _, _) and
ancestor = jumpSource
or
// For performance, we don't want a fastTC here
jumpSourceHasAncestor(jumpSource, ancestor.getAChild())
}
cached
Instruction getInstructionBackEdgeSuccessor(Instruction instruction, EdgeKind kind) {
exists(
TranslatedElement sourceElement, InstructionTag sourceTag, TranslatedElement requiredAncestor
|
backEdgeCandidate(sourceElement, sourceTag, requiredAncestor, result, kind) and
jumpSourceHasAncestor(sourceElement, requiredAncestor) and
instruction = sourceElement.getInstruction(sourceTag)
Instruction getInstructionBackEdgeSuccessor(Instruction instruction, EdgeKind kind) {
exists(
TranslatedElement sourceElement, InstructionTag sourceTag, TranslatedElement requiredAncestor
|
backEdgeCandidate(sourceElement, sourceTag, requiredAncestor, result, kind) and
jumpSourceHasAncestor(sourceElement, requiredAncestor) and
instruction = sourceElement.getInstruction(sourceTag)
)
or
// Goto statement:
// As a conservative approximation, any edge out of `goto` is a back edge
// unless it goes strictly forward in the program text. A `goto` whose
// source and target are both inside a macro will be seen as having the
// same location for source and target, so we conservatively assume that
// such a `goto` creates a back edge.
exists(TranslatedElement s, GotoStmt goto |
not isStrictlyForwardGoto(goto) and
goto = s.getAST() and
exists(InstructionTag tag |
result = s.getInstructionSuccessor(tag, kind) and
instruction = s.getInstruction(tag)
)
or
// Goto statement:
// As a conservative approximation, any edge out of `goto` is a back edge
// unless it goes strictly forward in the program text. A `goto` whose
// source and target are both inside a macro will be seen as having the
// same location for source and target, so we conservatively assume that
// such a `goto` creates a back edge.
exists(TranslatedElement s, GotoStmt goto |
not isStrictlyForwardGoto(goto) and
goto = s.getAST() and
exists(InstructionTag tag |
result = s.getInstructionSuccessor(tag, kind) and
instruction = s.getInstruction(tag)
)
)
}
)
}
/** Holds if `goto` jumps strictly forward in the program text. */
private predicate isStrictlyForwardGoto(GotoStmt goto) {
goto.getLocation().isBefore(goto.getTarget().getLocation())
}
/** Holds if `goto` jumps strictly forward in the program text. */
private predicate isStrictlyForwardGoto(GotoStmt goto) {
goto.getLocation().isBefore(goto.getTarget().getLocation())
}
cached
Locatable getInstructionAST(TStageInstruction instr) {
result = getInstructionTranslatedElement(instr).getAST()
}
Locatable getInstructionAST(TStageInstruction instr) {
result = getInstructionTranslatedElement(instr).getAST()
}
cached
CppType getInstructionResultType(TStageInstruction instr) {
exists(TranslatedElement element, InstructionTag tag |
instructionOrigin(instr, element, tag) and
element.hasInstruction(_, tag, result)
)
}
CppType getInstructionResultType(TStageInstruction instr) {
exists(TranslatedElement element, InstructionTag tag |
instructionOrigin(instr, element, tag) and
element.hasInstruction(_, tag, result)
)
}
cached
Opcode getInstructionOpcode(TStageInstruction instr) {
exists(TranslatedElement element, InstructionTag tag |
instructionOrigin(instr, element, tag) and
element.hasInstruction(result, tag, _)
)
}
Opcode getInstructionOpcode(TStageInstruction instr) {
exists(TranslatedElement element, InstructionTag tag |
instructionOrigin(instr, element, tag) and
element.hasInstruction(result, tag, _)
)
}
cached
IRFunctionBase getInstructionEnclosingIRFunction(TStageInstruction instr) {
result.getFunction() = getInstructionTranslatedElement(instr).getFunction()
}
IRFunctionBase getInstructionEnclosingIRFunction(TStageInstruction instr) {
result.getFunction() = getInstructionTranslatedElement(instr).getFunction()
}
cached
Instruction getPrimaryInstructionForSideEffect(SideEffectInstruction instruction) {
exists(TranslatedElement element, InstructionTag tag |
instructionOrigin(instruction, element, tag) and
result = element.getPrimaryInstructionForSideEffect(tag)
)
}
Instruction getPrimaryInstructionForSideEffect(SideEffectInstruction instruction) {
exists(TranslatedElement element, InstructionTag tag |
instructionOrigin(instruction, element, tag) and
result = element.getPrimaryInstructionForSideEffect(tag)
)
}
import CachedForDebugging