python: Add query for prompt injection

This pull request introduces a new CodeQL query for detecting prompt injection vulnerabilities in Python code targeting AI prompting APIs such as agents and openai. The changes includes a new experimental query, new taint flow and type models, a customizable dataflow configuration, documentation, and comprehensive test coverage.
This commit is contained in:
yoff
2026-01-29 23:47:52 +01:00
parent 34800d1519
commit e7a0fc7140
17 changed files with 519 additions and 1 deletions

View File

@@ -0,0 +1,24 @@
<!DOCTYPE qhelp PUBLIC
"-//Semmle//qhelp//EN"
"qhelp.dtd">
<qhelp>
<overview>
<p>Prompts can be constructed to bypass the original purposes of an agent and lead to sensitive data leak or
operations that were not intended.</p>
</overview>
<recommendation>
<p>Sanitize user input and also avoid using user input in developer or system level prompts.</p>
</recommendation>
<example>
<p>In the following examples, the cases marked GOOD show secure prompt construction; whereas in the case marked BAD they may be susceptible to prompt injection.</p>
<sample src="examples/example.py" />
</example>
<references>
<li>OpenAI: <a href="https://openai.github.io/openai-guardrails-python">Guardrails</a>.</li>
</references>
</qhelp>

View File

@@ -0,0 +1,20 @@
/**
* @name Prompt injection
* @kind path-problem
* @problem.severity error
* @security-severity 5.0
* @precision high
* @id py/prompt-injection
* @tags security
* experimental
* external/cwe/cwe-1427
*/
import python
import experimental.semmle.python.security.dataflow.PromptInjectionQuery
import PromptInjectionFlow::PathGraph
from PromptInjectionFlow::PathNode source, PromptInjectionFlow::PathNode sink
where PromptInjectionFlow::flowPath(source, sink)
select sink.getNode(), source, sink, "This prompt construction depends on a $@.", source.getNode(),
"user-provided value"

View File

@@ -0,0 +1,17 @@
from flask import Flask, request
from agents import Agent
from guardrails import GuardrailAgent
@app.route("/parameter-route")
def get_input():
input = request.args.get("input")
goodAgent = GuardrailAgent( # GOOD: Agent created with guardrails automatically configured.
config=Path("guardrails_config.json"),
name="Assistant",
instructions="This prompt is customized for " + input)
badAgent = Agent(
name="Assistant",
instructions="This prompt is customized for " + input # BAD: user input in agent instruction.
)

View File

@@ -483,3 +483,28 @@ class EmailSender extends DataFlow::Node instanceof EmailSender::Range {
*/
DataFlow::Node getABody() { result in [super.getPlainTextBody(), super.getHtmlBody()] }
}
/**
* A data-flow node that prompts an AI model.
*
* Extend this class to refine existing API models. If you want to model new APIs,
* extend `AIPrompt::Range` instead.
*/
class AIPrompt extends DataFlow::Node instanceof AIPrompt::Range {
/** Gets an input that is used as AI prompt. */
DataFlow::Node getAPrompt() { result = super.getAPrompt() }
}
/** Provides a class for modeling new AI prompting mechanisms. */
module AIPrompt {
/**
* A data-flow node that prompts an AI model.
*
* Extend this class to model new APIs. If you want to refine existing API models,
* extend `AIPrompt` instead.
*/
abstract class Range extends DataFlow::Node {
/** Gets an input that is used as AI prompt. */
abstract DataFlow::Node getAPrompt();
}
}

View File

@@ -13,6 +13,7 @@ private import experimental.semmle.python.frameworks.Scrapli
private import experimental.semmle.python.frameworks.Twisted
private import experimental.semmle.python.frameworks.JWT
private import experimental.semmle.python.frameworks.Csv
private import experimental.semmle.python.frameworks.OpenAI
private import experimental.semmle.python.libraries.PyJWT
private import experimental.semmle.python.libraries.Python_JWT
private import experimental.semmle.python.libraries.Authlib

View File

@@ -0,0 +1,88 @@
/**
* Provides classes modeling security-relevant aspects of the `openAI` Agents SDK package.
* See https://github.com/openai/openai-agents-python.
* As well as the regular openai python interface.
* See https://github.com/openai/openai-python.
*/
private import python
private import semmle.python.ApiGraphs
/**
* Provides models for agents SDK (instances of the `agents.Runner` class etc).
*
* See https://github.com/openai/openai-agents-python.
*/
module AgentSDK {
/** Gets a reference to the `agents.Runner` class. */
API::Node classRef() { result = API::moduleImport("agents").getMember("Runner") }
/** Gets a reference to the `run` members. */
API::Node runMembers() { result = classRef().getMember(["run", "run_sync", "run_streamed"]) }
/** Gets a reference to a potential property of `agents.Runner` called input which can refer to a system prompt depending on the role specified. */
API::Node getContentNode() {
result = runMembers().getKeywordParameter("input").getASubscript().getSubscript("content")
or
result = runMembers().getParameter(_).getASubscript().getSubscript("content")
}
}
/**
* Provides models for Agent (instances of the `openai.OpenAI` class).
*
* See https://github.com/openai/openai-python.
*/
module OpenAI {
/** Gets a reference to the `openai.OpenAI` class. */
API::Node classRef() {
result =
API::moduleImport("openai").getMember(["OpenAI", "AsyncOpenAI", "AzureOpenAI"]).getReturn()
}
/** Gets a reference to a potential property of `openai.OpenAI` called instructions which refers to the system prompt. */
API::Node getContentNode() {
exists(API::Node content |
content =
classRef()
.getMember("responses")
.getMember("create")
.getKeywordParameter(["input", "instructions"])
or
content =
classRef()
.getMember("responses")
.getMember("create")
.getKeywordParameter(["input", "instructions"])
.getASubscript()
.getSubscript("content")
or
content =
classRef()
.getMember("realtime")
.getMember("connect")
.getReturn()
.getMember("conversation")
.getMember("item")
.getMember("create")
.getKeywordParameter("item")
.getSubscript("content")
or
content =
classRef()
.getMember("chat")
.getMember("completions")
.getMember("create")
.getKeywordParameter("messages")
.getASubscript()
.getSubscript("content")
|
// content
if not exists(content.getASubscript())
then result = content
else
// content.text
result = content.getASubscript().getSubscript("text")
)
}
}

View File

@@ -0,0 +1,65 @@
/**
* Provides default sources, sinks and sanitizers for detecting
* "prompt injection"
* vulnerabilities, as well as extension points for adding your own.
*/
import python
private import semmle.python.dataflow.new.DataFlow
private import semmle.python.Concepts
private import experimental.semmle.python.Concepts
private import semmle.python.dataflow.new.RemoteFlowSources
private import semmle.python.dataflow.new.BarrierGuards
private import semmle.python.frameworks.data.ModelsAsData
private import experimental.semmle.python.frameworks.OpenAI
/**
* Provides default sources, sinks and sanitizers for detecting
* "prompt injection"
* vulnerabilities, as well as extension points for adding your own.
*/
module PromptInjection {
/**
* A data flow source for "prompt injection" vulnerabilities.
*/
abstract class Source extends DataFlow::Node { }
/**
* A data flow sink for "prompt injection" vulnerabilities.
*/
abstract class Sink extends DataFlow::Node { }
/**
* A sanitizer for "prompt injection" vulnerabilities.
*/
abstract class Sanitizer extends DataFlow::Node { }
/**
* An active threat-model source, considered as a flow source.
*/
private class ActiveThreatModelSourceAsSource extends Source, ActiveThreatModelSource { }
/**
* A prompt to an AI model, considered as a flow sink.
*/
class AIPromptAsSink extends Sink {
AIPromptAsSink() { this = any(AIPrompt p).getAPrompt() }
}
private class SinkFromModel extends Sink {
SinkFromModel() { this = ModelOutput::getASinkNode("prompt-injection").asSink() }
}
private class PromptContentSink extends Sink {
PromptContentSink() {
this = OpenAI::getContentNode().asSink()
or
this = AgentSDK::getContentNode().asSink()
}
}
/**
* A comparison with a constant, considered as a sanitizer-guard.
*/
class ConstCompareAsSanitizerGuard extends Sanitizer, ConstCompareBarrier { }
}

View File

@@ -0,0 +1,25 @@
/**
* Provides a taint-tracking configuration for detecting "prompt injection" vulnerabilities.
*
* Note, for performance reasons: only import this file if
* `PromptInjection::Configuration` is needed, otherwise
* `PromptInjectionCustomizations` should be imported instead.
*/
private import python
import semmle.python.dataflow.new.DataFlow
import semmle.python.dataflow.new.TaintTracking
import PromptInjectionCustomizations::PromptInjection
private module PromptInjectionConfig implements DataFlow::ConfigSig {
predicate isSource(DataFlow::Node node) { node instanceof Source }
predicate isSink(DataFlow::Node node) { node instanceof Sink }
predicate isBarrier(DataFlow::Node node) { node instanceof Sanitizer }
predicate observeDiffInformedIncrementalMode() { any() }
}
/** Global taint-tracking for detecting "prompt injection" vulnerabilities. */
module PromptInjectionFlow = TaintTracking::Global<PromptInjectionConfig>;