mirror of
https://github.com/github/codeql.git
synced 2026-02-12 13:11:20 +01:00
python: Add query for prompt injection
This pull request introduces a new CodeQL query for detecting prompt injection vulnerabilities in Python code targeting AI prompting APIs such as agents and openai. The changes includes a new experimental query, new taint flow and type models, a customizable dataflow configuration, documentation, and comprehensive test coverage.
This commit is contained in:
@@ -0,0 +1,24 @@
|
||||
<!DOCTYPE qhelp PUBLIC
|
||||
"-//Semmle//qhelp//EN"
|
||||
"qhelp.dtd">
|
||||
<qhelp>
|
||||
|
||||
<overview>
|
||||
<p>Prompts can be constructed to bypass the original purposes of an agent and lead to sensitive data leak or
|
||||
operations that were not intended.</p>
|
||||
</overview>
|
||||
|
||||
<recommendation>
|
||||
<p>Sanitize user input and also avoid using user input in developer or system level prompts.</p>
|
||||
</recommendation>
|
||||
|
||||
<example>
|
||||
<p>In the following examples, the cases marked GOOD show secure prompt construction; whereas in the case marked BAD they may be susceptible to prompt injection.</p>
|
||||
<sample src="examples/example.py" />
|
||||
</example>
|
||||
|
||||
<references>
|
||||
<li>OpenAI: <a href="https://openai.github.io/openai-guardrails-python">Guardrails</a>.</li>
|
||||
</references>
|
||||
|
||||
</qhelp>
|
||||
@@ -0,0 +1,20 @@
|
||||
/**
|
||||
* @name Prompt injection
|
||||
* @kind path-problem
|
||||
* @problem.severity error
|
||||
* @security-severity 5.0
|
||||
* @precision high
|
||||
* @id py/prompt-injection
|
||||
* @tags security
|
||||
* experimental
|
||||
* external/cwe/cwe-1427
|
||||
*/
|
||||
|
||||
import python
|
||||
import experimental.semmle.python.security.dataflow.PromptInjectionQuery
|
||||
import PromptInjectionFlow::PathGraph
|
||||
|
||||
from PromptInjectionFlow::PathNode source, PromptInjectionFlow::PathNode sink
|
||||
where PromptInjectionFlow::flowPath(source, sink)
|
||||
select sink.getNode(), source, sink, "This prompt construction depends on a $@.", source.getNode(),
|
||||
"user-provided value"
|
||||
@@ -0,0 +1,17 @@
|
||||
from flask import Flask, request
|
||||
from agents import Agent
|
||||
from guardrails import GuardrailAgent
|
||||
|
||||
@app.route("/parameter-route")
|
||||
def get_input():
|
||||
input = request.args.get("input")
|
||||
|
||||
goodAgent = GuardrailAgent( # GOOD: Agent created with guardrails automatically configured.
|
||||
config=Path("guardrails_config.json"),
|
||||
name="Assistant",
|
||||
instructions="This prompt is customized for " + input)
|
||||
|
||||
badAgent = Agent(
|
||||
name="Assistant",
|
||||
instructions="This prompt is customized for " + input # BAD: user input in agent instruction.
|
||||
)
|
||||
@@ -483,3 +483,28 @@ class EmailSender extends DataFlow::Node instanceof EmailSender::Range {
|
||||
*/
|
||||
DataFlow::Node getABody() { result in [super.getPlainTextBody(), super.getHtmlBody()] }
|
||||
}
|
||||
|
||||
/**
|
||||
* A data-flow node that prompts an AI model.
|
||||
*
|
||||
* Extend this class to refine existing API models. If you want to model new APIs,
|
||||
* extend `AIPrompt::Range` instead.
|
||||
*/
|
||||
class AIPrompt extends DataFlow::Node instanceof AIPrompt::Range {
|
||||
/** Gets an input that is used as AI prompt. */
|
||||
DataFlow::Node getAPrompt() { result = super.getAPrompt() }
|
||||
}
|
||||
|
||||
/** Provides a class for modeling new AI prompting mechanisms. */
|
||||
module AIPrompt {
|
||||
/**
|
||||
* A data-flow node that prompts an AI model.
|
||||
*
|
||||
* Extend this class to model new APIs. If you want to refine existing API models,
|
||||
* extend `AIPrompt` instead.
|
||||
*/
|
||||
abstract class Range extends DataFlow::Node {
|
||||
/** Gets an input that is used as AI prompt. */
|
||||
abstract DataFlow::Node getAPrompt();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -13,6 +13,7 @@ private import experimental.semmle.python.frameworks.Scrapli
|
||||
private import experimental.semmle.python.frameworks.Twisted
|
||||
private import experimental.semmle.python.frameworks.JWT
|
||||
private import experimental.semmle.python.frameworks.Csv
|
||||
private import experimental.semmle.python.frameworks.OpenAI
|
||||
private import experimental.semmle.python.libraries.PyJWT
|
||||
private import experimental.semmle.python.libraries.Python_JWT
|
||||
private import experimental.semmle.python.libraries.Authlib
|
||||
|
||||
@@ -0,0 +1,88 @@
|
||||
/**
|
||||
* Provides classes modeling security-relevant aspects of the `openAI` Agents SDK package.
|
||||
* See https://github.com/openai/openai-agents-python.
|
||||
* As well as the regular openai python interface.
|
||||
* See https://github.com/openai/openai-python.
|
||||
*/
|
||||
|
||||
private import python
|
||||
private import semmle.python.ApiGraphs
|
||||
|
||||
/**
|
||||
* Provides models for agents SDK (instances of the `agents.Runner` class etc).
|
||||
*
|
||||
* See https://github.com/openai/openai-agents-python.
|
||||
*/
|
||||
module AgentSDK {
|
||||
/** Gets a reference to the `agents.Runner` class. */
|
||||
API::Node classRef() { result = API::moduleImport("agents").getMember("Runner") }
|
||||
|
||||
/** Gets a reference to the `run` members. */
|
||||
API::Node runMembers() { result = classRef().getMember(["run", "run_sync", "run_streamed"]) }
|
||||
|
||||
/** Gets a reference to a potential property of `agents.Runner` called input which can refer to a system prompt depending on the role specified. */
|
||||
API::Node getContentNode() {
|
||||
result = runMembers().getKeywordParameter("input").getASubscript().getSubscript("content")
|
||||
or
|
||||
result = runMembers().getParameter(_).getASubscript().getSubscript("content")
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Provides models for Agent (instances of the `openai.OpenAI` class).
|
||||
*
|
||||
* See https://github.com/openai/openai-python.
|
||||
*/
|
||||
module OpenAI {
|
||||
/** Gets a reference to the `openai.OpenAI` class. */
|
||||
API::Node classRef() {
|
||||
result =
|
||||
API::moduleImport("openai").getMember(["OpenAI", "AsyncOpenAI", "AzureOpenAI"]).getReturn()
|
||||
}
|
||||
|
||||
/** Gets a reference to a potential property of `openai.OpenAI` called instructions which refers to the system prompt. */
|
||||
API::Node getContentNode() {
|
||||
exists(API::Node content |
|
||||
content =
|
||||
classRef()
|
||||
.getMember("responses")
|
||||
.getMember("create")
|
||||
.getKeywordParameter(["input", "instructions"])
|
||||
or
|
||||
content =
|
||||
classRef()
|
||||
.getMember("responses")
|
||||
.getMember("create")
|
||||
.getKeywordParameter(["input", "instructions"])
|
||||
.getASubscript()
|
||||
.getSubscript("content")
|
||||
or
|
||||
content =
|
||||
classRef()
|
||||
.getMember("realtime")
|
||||
.getMember("connect")
|
||||
.getReturn()
|
||||
.getMember("conversation")
|
||||
.getMember("item")
|
||||
.getMember("create")
|
||||
.getKeywordParameter("item")
|
||||
.getSubscript("content")
|
||||
or
|
||||
content =
|
||||
classRef()
|
||||
.getMember("chat")
|
||||
.getMember("completions")
|
||||
.getMember("create")
|
||||
.getKeywordParameter("messages")
|
||||
.getASubscript()
|
||||
.getSubscript("content")
|
||||
|
|
||||
// content
|
||||
if not exists(content.getASubscript())
|
||||
then result = content
|
||||
else
|
||||
// content.text
|
||||
result = content.getASubscript().getSubscript("text")
|
||||
)
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,65 @@
|
||||
/**
|
||||
* Provides default sources, sinks and sanitizers for detecting
|
||||
* "prompt injection"
|
||||
* vulnerabilities, as well as extension points for adding your own.
|
||||
*/
|
||||
|
||||
import python
|
||||
private import semmle.python.dataflow.new.DataFlow
|
||||
private import semmle.python.Concepts
|
||||
private import experimental.semmle.python.Concepts
|
||||
private import semmle.python.dataflow.new.RemoteFlowSources
|
||||
private import semmle.python.dataflow.new.BarrierGuards
|
||||
private import semmle.python.frameworks.data.ModelsAsData
|
||||
private import experimental.semmle.python.frameworks.OpenAI
|
||||
|
||||
/**
|
||||
* Provides default sources, sinks and sanitizers for detecting
|
||||
* "prompt injection"
|
||||
* vulnerabilities, as well as extension points for adding your own.
|
||||
*/
|
||||
module PromptInjection {
|
||||
/**
|
||||
* A data flow source for "prompt injection" vulnerabilities.
|
||||
*/
|
||||
abstract class Source extends DataFlow::Node { }
|
||||
|
||||
/**
|
||||
* A data flow sink for "prompt injection" vulnerabilities.
|
||||
*/
|
||||
abstract class Sink extends DataFlow::Node { }
|
||||
|
||||
/**
|
||||
* A sanitizer for "prompt injection" vulnerabilities.
|
||||
*/
|
||||
abstract class Sanitizer extends DataFlow::Node { }
|
||||
|
||||
/**
|
||||
* An active threat-model source, considered as a flow source.
|
||||
*/
|
||||
private class ActiveThreatModelSourceAsSource extends Source, ActiveThreatModelSource { }
|
||||
|
||||
/**
|
||||
* A prompt to an AI model, considered as a flow sink.
|
||||
*/
|
||||
class AIPromptAsSink extends Sink {
|
||||
AIPromptAsSink() { this = any(AIPrompt p).getAPrompt() }
|
||||
}
|
||||
|
||||
private class SinkFromModel extends Sink {
|
||||
SinkFromModel() { this = ModelOutput::getASinkNode("prompt-injection").asSink() }
|
||||
}
|
||||
|
||||
private class PromptContentSink extends Sink {
|
||||
PromptContentSink() {
|
||||
this = OpenAI::getContentNode().asSink()
|
||||
or
|
||||
this = AgentSDK::getContentNode().asSink()
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* A comparison with a constant, considered as a sanitizer-guard.
|
||||
*/
|
||||
class ConstCompareAsSanitizerGuard extends Sanitizer, ConstCompareBarrier { }
|
||||
}
|
||||
@@ -0,0 +1,25 @@
|
||||
/**
|
||||
* Provides a taint-tracking configuration for detecting "prompt injection" vulnerabilities.
|
||||
*
|
||||
* Note, for performance reasons: only import this file if
|
||||
* `PromptInjection::Configuration` is needed, otherwise
|
||||
* `PromptInjectionCustomizations` should be imported instead.
|
||||
*/
|
||||
|
||||
private import python
|
||||
import semmle.python.dataflow.new.DataFlow
|
||||
import semmle.python.dataflow.new.TaintTracking
|
||||
import PromptInjectionCustomizations::PromptInjection
|
||||
|
||||
private module PromptInjectionConfig implements DataFlow::ConfigSig {
|
||||
predicate isSource(DataFlow::Node node) { node instanceof Source }
|
||||
|
||||
predicate isSink(DataFlow::Node node) { node instanceof Sink }
|
||||
|
||||
predicate isBarrier(DataFlow::Node node) { node instanceof Sanitizer }
|
||||
|
||||
predicate observeDiffInformedIncrementalMode() { any() }
|
||||
}
|
||||
|
||||
/** Global taint-tracking for detecting "prompt injection" vulnerabilities. */
|
||||
module PromptInjectionFlow = TaintTracking::Global<PromptInjectionConfig>;
|
||||
Reference in New Issue
Block a user