Merge pull request #2262 from jbj/ir-virtual-dispatch-local

C++: Rudimentary support for IR data flow virtual dispatch
This commit is contained in:
Robert Marsh
2019-11-07 13:09:24 -08:00
committed by GitHub
7 changed files with 130 additions and 4 deletions

View File

@@ -2,6 +2,7 @@ import cpp
import semmle.code.cpp.security.Security
private import semmle.code.cpp.ir.dataflow.DataFlow
private import semmle.code.cpp.ir.IR
private import semmle.code.cpp.ir.dataflow.internal.DataFlowDispatch as Dispatch
/**
* A predictable instruction is one where an external user can predict
@@ -145,7 +146,8 @@ GlobalOrNamespaceVariable globalVarFromId(string id) {
}
Function resolveCall(Call call) {
// TODO: improve virtual dispatch. This will help in the test for
// `UncontrolledProcessOperation.ql`.
result = call.getTarget()
exists(CallInstruction callInstruction |
callInstruction.getAST() = call and
result = Dispatch::viableCallable(callInstruction)
)
}

View File

@@ -1,5 +1,6 @@
private import cpp
private import semmle.code.cpp.ir.IR
private import semmle.code.cpp.ir.dataflow.DataFlow
Function viableImpl(CallInstruction call) { result = viableCallable(call) }
@@ -20,6 +21,58 @@ Function viableCallable(CallInstruction call) {
functionSignatureWithBody(qualifiedName, nparams, result) and
strictcount(Function other | functionSignatureWithBody(qualifiedName, nparams, other)) = 1
)
or
// Rudimentary virtual dispatch support. It's essentially local data flow
// where the source is a derived-to-base conversion and the target is the
// qualifier of a call.
exists(Class derived, DataFlow::Node thisArgument |
nodeMayHaveClass(derived, thisArgument) and
overrideMayAffectCall(derived, thisArgument, _, result, call)
)
}
/**
* Holds if `call` is a virtual function call with qualifier `thisArgument` in
* `enclosingFunction`, whose static target is overridden by
* `overridingFunction` in `overridingClass`.
*/
pragma[noinline]
private predicate overrideMayAffectCall(
Class overridingClass, DataFlow::Node thisArgument, Function enclosingFunction,
MemberFunction overridingFunction, CallInstruction call
) {
call.getEnclosingFunction() = enclosingFunction and
overridingFunction.getAnOverriddenFunction+() = call.getStaticCallTarget() and
overridingFunction.getDeclaringType() = overridingClass and
thisArgument = DataFlow::instructionNode(call.getThisArgument())
}
/**
* Holds if `node` may have dynamic class `derived`, where `derived` is a class
* that may affect virtual dispatch within the enclosing function.
*
* For the sake of performance, this recursion is written out manually to make
* it a relation on `Class x Node` rather than `Node x Node` or `MemberFunction
* x Node`, both of which would be larger. It's a forward search since there
* should usually be fewer classes than calls.
*
* If a value is cast several classes up in the hierarchy, that will be modeled
* as a chain of `ConvertToBaseInstruction`s and will cause the search to start
* from each of them and pass through subsequent ones. There might be
* performance to gain by stopping before a second upcast and reconstructing
* the full chain in a "big-step" recursion after this one.
*/
private predicate nodeMayHaveClass(Class derived, DataFlow::Node node) {
exists(ConvertToBaseInstruction toBase |
derived = toBase.getDerivedClass() and
overrideMayAffectCall(derived, _, toBase.getEnclosingFunction(), _, _) and
node.asInstruction() = toBase
)
or
exists(DataFlow::Node prev |
nodeMayHaveClass(derived, prev) and
DataFlow::localFlowStep(prev, node)
)
}
/**

View File

@@ -205,7 +205,8 @@ private predicate simpleInstructionLocalFlowStep(Instruction iFrom, Instruction
iTo.(CopyInstruction).getSourceValue() = iFrom or
iTo.(PhiInstruction).getAnOperand().getDef() = iFrom or
// Treat all conversions as flow, even conversions between different numeric types.
iTo.(ConvertInstruction).getUnary() = iFrom
iTo.(ConvertInstruction).getUnary() = iFrom or
iTo.(InheritanceConversionInstruction).getUnary() = iFrom
}
/**