Merge branch 'main' into port-url-redirect-query

This commit is contained in:
Rasmus Wriedt Larsen
2021-01-29 16:22:50 +01:00
469 changed files with 78092 additions and 11197 deletions

View File

@@ -39,6 +39,16 @@ class Function extends Function_, Scope, AstNode {
exists(YieldFrom y | y.getScope() = this)
}
/**
* Holds if this function represents a lambda.
*
* The extractor reifies each lambda expression as a (local) function with the name
* "lambda". As `lambda` is a keyword in Python, it's impossible to create a function with this
* name otherwise, and so it's impossible to get a non-lambda function accidentally
* classified as a lambda.
*/
predicate isLambda() { this.getName() = "lambda" }
/** Whether this function is declared in a class and is named `__init__` */
predicate isInitMethod() { this.isMethod() and this.getName() = "__init__" }

View File

@@ -11,103 +11,138 @@ private import semmle.python.essa.SsaCompute
//--------
predicate isExpressionNode(ControlFlowNode node) { node.getNode() instanceof Expr }
/** A data flow node for which we should synthesise an associated pre-update node. */
abstract class NeedsSyntheticPreUpdateNode extends Node {
/** A label for this kind of node. This will figure in the textual representation of the synthesized pre-update node. */
abstract string label();
}
/** A module collecting the different reasons for synthesising a pre-update node. */
module syntheticPreUpdateNode {
class SyntheticPreUpdateNode extends Node, TSyntheticPreUpdateNode {
NeedsSyntheticPreUpdateNode post;
class SyntheticPreUpdateNode extends Node, TSyntheticPreUpdateNode {
NeedsSyntheticPreUpdateNode post;
SyntheticPreUpdateNode() { this = TSyntheticPreUpdateNode(post) }
SyntheticPreUpdateNode() { this = TSyntheticPreUpdateNode(post) }
/** Gets the node for which this is a synthetic pre-update node. */
Node getPostUpdateNode() { result = post }
/** Gets the node for which this is a synthetic pre-update node. */
Node getPostUpdateNode() { result = post }
override string toString() { result = "[pre " + post.label() + "] " + post.toString() }
override string toString() { result = "[pre " + post.label() + "] " + post.toString() }
override Scope getScope() { result = post.getScope() }
override Scope getScope() { result = post.getScope() }
override Location getLocation() { result = post.getLocation() }
}
/** A data flow node for which we should synthesise an associated post-update node. */
abstract class NeedsSyntheticPostUpdateNode extends Node {
/** A label for this kind of node. This will figure in the textual representation of the synthesized post-update node. */
abstract string label();
}
/** An argument might have its value changed as a result of a call. */
class ArgumentPreUpdateNode extends NeedsSyntheticPostUpdateNode, ArgumentNode {
// Certain arguments, such as implicit self arguments are already post-update nodes
// and should not have an extra node synthesised.
ArgumentPreUpdateNode() {
this = any(FunctionCall c).getArg(_)
or
// Avoid argument 0 of method calls as those have read post-update nodes.
exists(MethodCall c, int n | n > 0 | this = c.getArg(n))
or
this = any(SpecialCall c).getArg(_)
or
// Avoid argument 0 of class calls as those have non-synthetic post-update nodes.
exists(ClassCall c, int n | n > 0 | this = c.getArg(n))
override Location getLocation() { result = post.getLocation() }
}
override string label() { result = "arg" }
/** A data flow node for which we should synthesise an associated pre-update node. */
class NeedsSyntheticPreUpdateNode extends PostUpdateNode {
NeedsSyntheticPreUpdateNode() { this = objectCreationNode() }
override Node getPreUpdateNode() { result.(SyntheticPreUpdateNode).getPostUpdateNode() = this }
/**
* A label for this kind of node. This will figure in the textual representation of the synthesized pre-update node.
*
* There is currently only one reason for needing a pre-update node, so we always use that as the label.
*/
string label() { result = "objCreate" }
}
/**
* Calls to constructors are treated as post-update nodes for the synthesized argument
* that is mapped to the `self` parameter. That way, constructor calls represent the value of the
* object after the constructor (currently only `__init__`) has run.
*/
CfgNode objectCreationNode() { result.getNode().(CallNode) = any(ClassCall c).getNode() }
}
/** An object might have its value changed after a store. */
class StorePreUpdateNode extends NeedsSyntheticPostUpdateNode, CfgNode {
StorePreUpdateNode() {
import syntheticPreUpdateNode
/** A module collecting the different reasons for synthesising a post-update node. */
module syntheticPostUpdateNode {
/** A post-update node is synthesized for all nodes which satisfy `NeedsSyntheticPostUpdateNode`. */
class SyntheticPostUpdateNode extends PostUpdateNode, TSyntheticPostUpdateNode {
NeedsSyntheticPostUpdateNode pre;
SyntheticPostUpdateNode() { this = TSyntheticPostUpdateNode(pre) }
override Node getPreUpdateNode() { result = pre }
override string toString() { result = "[post " + pre.label() + "] " + pre.toString() }
override Scope getScope() { result = pre.getScope() }
override Location getLocation() { result = pre.getLocation() }
}
/** A data flow node for which we should synthesise an associated post-update node. */
class NeedsSyntheticPostUpdateNode extends Node {
NeedsSyntheticPostUpdateNode() {
this = argumentPreUpdateNode()
or
this = storePreUpdateNode()
or
this = readPreUpdateNode()
}
/**
* A label for this kind of node. This will figure in the textual representation of the synthesized post-update node.
* We favour being an arguments as the reason for the post-update node in case multiple reasons apply.
*/
string label() {
if this = argumentPreUpdateNode()
then result = "arg"
else
if this = storePreUpdateNode()
then result = "store"
else result = "read"
}
}
/**
* An argument might have its value changed as a result of a call.
* Certain arguments, such as implicit self arguments are already post-update nodes
* and should not have an extra node synthesised.
*/
ArgumentNode argumentPreUpdateNode() {
result = any(FunctionCall c).getArg(_)
or
// Avoid argument 0 of method calls as those have read post-update nodes.
exists(MethodCall c, int n | n > 0 | result = c.getArg(n))
or
result = any(SpecialCall c).getArg(_)
or
// Avoid argument 0 of class calls as those have non-synthetic post-update nodes.
exists(ClassCall c, int n | n > 0 | result = c.getArg(n))
}
/** An object might have its value changed after a store. */
CfgNode storePreUpdateNode() {
exists(Attribute a |
node = a.getObject().getAFlowNode() and
result.getNode() = a.getObject().getAFlowNode() and
a.getCtx() instanceof Store
)
}
override string label() { result = "store" }
}
/** A node marking the state change of an object after a read. */
class ReadPreUpdateNode extends NeedsSyntheticPostUpdateNode, CfgNode {
ReadPreUpdateNode() {
/**
* A node marking the state change of an object after a read.
*
* A reverse read happens when the result of a read is modified, e.g. in
* ```python
* l = [ mutable ]
* l[0].mutate()
* ```
* we may now have changed the content of `l`. To track this, there must be
* a postupdate node for `l`.
*/
CfgNode readPreUpdateNode() {
exists(Attribute a |
node = a.getObject().getAFlowNode() and
result.getNode() = a.getObject().getAFlowNode() and
a.getCtx() instanceof Load
)
or
result.getNode() = any(SubscriptNode s).getObject()
or
// The dictionary argument is read from if the callable has parameters matching the keys.
result.getNode().getNode() = any(Call call).getKwargs()
}
override string label() { result = "read" }
}
/** A post-update node is synthesized for all nodes which satisfy `NeedsSyntheticPostUpdateNode`. */
class SyntheticPostUpdateNode extends PostUpdateNode, TSyntheticPostUpdateNode {
NeedsSyntheticPostUpdateNode pre;
SyntheticPostUpdateNode() { this = TSyntheticPostUpdateNode(pre) }
override Node getPreUpdateNode() { result = pre }
override string toString() { result = "[post " + pre.label() + "] " + pre.toString() }
override Scope getScope() { result = pre.getScope() }
override Location getLocation() { result = pre.getLocation() }
}
/**
* Calls to constructors are treated as post-update nodes for the synthesized argument
* that is mapped to the `self` parameter. That way, constructor calls represent the value of the
* object after the constructor (currently only `__init__`) has run.
*/
class ObjectCreationNode extends PostUpdateNode, NeedsSyntheticPreUpdateNode, CfgNode {
ObjectCreationNode() { node.(CallNode) = any(ClassCall c).getNode() }
override Node getPreUpdateNode() { result.(SyntheticPreUpdateNode).getPostUpdateNode() = this }
override string label() { result = "objCreate" }
}
import syntheticPostUpdateNode
class DataFlowExpr = Expr;
@@ -126,6 +161,15 @@ module EssaFlow {
nodeFrom.(CfgNode).getNode() =
nodeTo.(EssaNode).getVar().getDefinition().(AssignmentDefinition).getValue()
or
// Definition
// `[a, b] = iterable`
// nodeFrom = `iterable`, cfg node
// nodeTo = `TIterableSequence([a, b])`
exists(UnpackingAssignmentDirectTarget target |
nodeFrom.asExpr() = target.getValue() and
nodeTo = TIterableSequenceNode(target)
)
or
// With definition
// `with f(42) as x:`
// nodeFrom is `f(42)`, cfg node
@@ -139,6 +183,10 @@ module EssaFlow {
contextManager.strictlyDominates(var)
)
or
// Parameter definition
// `def foo(x):`
// nodeFrom is `x`, cfgNode
// nodeTo is `x`, essa var
exists(ParameterDefinition pd |
nodeFrom.asCfgNode() = pd.getDefiningNode() and
nodeTo.asVar() = pd.getVariable()
@@ -161,6 +209,9 @@ module EssaFlow {
// If expressions
nodeFrom.asCfgNode() = nodeTo.asCfgNode().(IfExprNode).getAnOperand()
or
// Flow inside an unpacking assignment
unpackingAssignmentFlowStep(nodeFrom, nodeTo)
or
// Overflow keyword argument
exists(CallNode call, CallableValue callable |
call = callable.getACall() and
@@ -419,7 +470,7 @@ module ArgumentPassing {
// argument unpacked from dict
exists(string name |
call_unpacks(call, mapping, callable, name, paramN) and
result = TKwUnpacked(call, callable, name)
result = TKwUnpackedNode(call, callable, name)
)
)
}
@@ -484,10 +535,12 @@ import ArgumentPassing
*/
newtype TDataFlowCallable =
TCallableValue(CallableValue callable) {
callable instanceof FunctionValue
callable instanceof FunctionValue and
not callable.(FunctionValue).isLambda()
or
callable instanceof ClassValue
} or
TLambda(Function lambda) { lambda.isLambda() } or
TModule(Module m)
/** Represents a callable. */
@@ -530,6 +583,27 @@ class DataFlowCallableValue extends DataFlowCallable, TCallableValue {
override CallableValue getCallableValue() { result = callable }
}
/** A class representing a callable lambda. */
class DataFlowLambda extends DataFlowCallable, TLambda {
Function lambda;
DataFlowLambda() { this = TLambda(lambda) }
override string toString() { result = lambda.toString() }
override CallNode getACall() { result = getCallableValue().getACall() }
override Scope getScope() { result = lambda.getEvaluatingScope() }
override NameNode getParameter(int n) { result = getParameter(getCallableValue(), n) }
override string getName() { result = "Lambda callable" }
override FunctionValue getCallableValue() {
result.getOrigin().getNode() = lambda.getDefinition()
}
}
/** A class representing the scope in which a `ModuleVariableNode` appears. */
class DataFlowModuleScope extends DataFlowCallable, TModule {
Module mod;
@@ -703,17 +777,6 @@ class SpecialCall extends DataFlowCall, TSpecialCall {
}
}
/** A data flow node that represents a call argument. */
class ArgumentNode extends Node {
ArgumentNode() { this = any(DataFlowCall c).getArg(_) }
/** Holds if this argument occurs at the given position in the given call. */
predicate argumentOf(DataFlowCall call, int pos) { this = call.getArg(pos) }
/** Gets the call in which this node is an argument. */
final DataFlowCall getCall() { this.argumentOf(result, _) }
}
/** Gets a viable run-time target for the call `call`. */
DataFlowCallable viableCallable(DataFlowCall call) { result = call.getCallable() }
@@ -844,6 +907,8 @@ predicate storeStep(Node nodeFrom, Content c, Node nodeTo) {
or
comprehensionStoreStep(nodeFrom, c, nodeTo)
or
unpackingAssignmentStoreStep(nodeFrom, c, nodeTo)
or
attributeStoreStep(nodeFrom, c, nodeTo)
or
posOverflowStoreStep(nodeFrom, c, nodeTo)
@@ -859,6 +924,7 @@ predicate listStoreStep(CfgNode nodeFrom, ListElementContent c, CfgNode nodeTo)
// nodeTo is the list, `[..., 42, ...]`, cfg node
// c denotes element of list
nodeTo.getNode().(ListNode).getAnElement() = nodeFrom.getNode() and
not nodeTo.getNode() instanceof UnpackingAssignmentSequenceTarget and
// Suppress unused variable warning
c = c
}
@@ -884,6 +950,7 @@ predicate tupleStoreStep(CfgNode nodeFrom, TupleElementContent c, CfgNode nodeTo
// c denotes element of tuple and index of nodeFrom
exists(int n |
nodeTo.getNode().(TupleNode).getElement(n) = nodeFrom.getNode() and
not nodeTo.getNode() instanceof UnpackingAssignmentSequenceTarget and
c.getIndex() = n
)
}
@@ -974,6 +1041,8 @@ predicate kwOverflowStoreStep(CfgNode nodeFrom, DictionaryElementContent c, Node
predicate readStep(Node nodeFrom, Content c, Node nodeTo) {
subscriptReadStep(nodeFrom, c, nodeTo)
or
unpackingAssignmentReadStep(nodeFrom, c, nodeTo)
or
popReadStep(nodeFrom, c, nodeTo)
or
comprehensionReadStep(nodeFrom, c, nodeTo)
@@ -1006,6 +1075,322 @@ predicate subscriptReadStep(CfgNode nodeFrom, Content c, CfgNode nodeTo) {
)
}
/**
* The unpacking assignment takes the general form
* ```python
* sequence = iterable
* ```
* where `sequence` is either a tuple or a list and it can contain wildcards.
* The iterable can be any iterable, which means that (CodeQL modeling of) content
* will need to change type if it should be transferred from the LHS to the RHS.
*
* Note that (CodeQL modeling of) content does not have to change type on data-flow
* paths _inside_ the LHS, as the different allowed syntaxes here are merely a convenience.
* Consequently, we model all LHS sequences as tuples, which have the more precise content
* model, making flow to the elements more precise. If an element is a starred variable,
* we will have to mutate the content type to be list content.
*
* We may for instance have
* ```python
* (a, b) = ["a", SOURCE] # RHS has content `ListElementContent`
* ```
* Due to the abstraction for list content, we do not know whether `SOURCE`
* ends up in `a` or in `b`, so we want to overapproximate and see it in both.
*
* Using wildcards we may have
* ```python
* (a, *b) = ("a", "b", SOURCE) # RHS has content `TupleElementContent(2)`
* ```
* Since the starred variables are always assigned (Python-)type list, `*b` will be
* `["b", SOURCE]`, and we will again overapproximate and assign it
* content corresponding to anything found in the RHS.
*
* For a precise transfer
* ```python
* (a, b) = ("a", SOURCE) # RHS has content `TupleElementContent(1)`
* ```
* we wish to keep the precision, so only `b` receives the tuple content at index 1.
*
* Finally, `sequence` is actually a pattern and can have a more complicated structure,
* such as
* ```python
* (a, [b, *c]) = ("a", ["b", SOURCE]) # RHS has content `TupleElementContent(1); ListElementContent`
* ```
* where `a` should not receive content, but `b` and `c` should. `c` will be `[SOURCE]` so
* should have the content transferred, while `b` should read it.
*
* To transfer content from RHS to the elements of the LHS in the expression `sequence = iterable`,
* we use two synthetic nodes:
*
* - `TIterableSequence(sequence)` which captures the content-modeling the entire `sequence` will have
* (essentially just a copy of the content-modeling the RHS has)
*
* - `TIterableElement(sequence)` which captures the content-modeling that will be assigned to an element.
* Note that an empty access path means that the value we are tracking flows directly to the element.
*
*
* The `TIterableSequence(sequence)` is at this point superflous but becomes useful when handling recursive
* structures in the LHS, where `sequence` is some internal sequence node. We can have a uniform treatment
* by always having these two synthetic nodes. So we transfer to (or, in the recursive case, read into)
* `TIterableSequence(sequence)`, from which we take a read step to `TIterableElement(sequence)` and then a
* store step to `sequence`.
*
* This allows the unknown content from the RHS to be read into `TIterableElement(sequence)` and tuple content
* to then be stored into `sequence`. If the content is already tuple content, this inderection creates crosstalk
* between indices. Therefore, tuple content is never read into `TIterableElement(sequence)`; it is instead
* transferred directly from `TIterableSequence(sequence)` to `sequence` via a flow step. Such a flow step will
* also transfer other content, but only tuple content is further read from `sequence` into its elements.
*
* The strategy is then via several read-, store-, and flow steps:
* 1. [Flow] Content is transferred from `iterable` to `TIterableSequence(sequence)` via a
* flow step. From here, everything happens on the LHS.
*
* 2. [Flow] Content is transferred from `TIterableSequence(sequence)` to `sequence` via a
* flow step. (Here only tuple content is relevant.)
*
* 3. [Read] Content is read from `TIterableSequence(sequence)` into `TIterableElement(sequence)`.
* As `sequence` is modeled as a tuple, we will not read tuple content as that would allow
* crosstalk.
*
* 4. [Store] Content is stored from `TIterableElement(sequence)` to `sequence`.
* Content type is `TupleElementContent` with indices taken from the syntax.
* For instance, if `sequence` is `(a, *b, c)`, content is written to index 0, 1, and 2.
* This is adequate as the route through `TIterableElement(sequence)` does not transfer precise content.
*
* 5. [Read] Content is read from `sequence` to its elements.
* a) If the element is a plain variable, the target is the corresponding essa node.
*
* b) If the element is itself a sequence, with control-flow node `seq`, the target is `TIterableSequence(seq)`.
*
* c) If the element is a starred variable, with control-flow node `v`, the target is `TIterableElement(v)`.
*
* 6. [Store] Content is stored from `TIterableElement(v)` to the essa variable for `v`, with
* content type `ListElementContent`.
*
* 7. [Flow, Read, Store] Steps 2 through 7 are repeated for all recursive elements which are sequences.
*
*
* We illustrate the above steps on the assignment
*
* ```python
* (a, b) = ["a", SOURCE]
* ```
*
* Looking at the content propagation to `a`:
* `["a", SOURCE]`: [ListElementContent]
*
* --Step 1-->
*
* `TIterableSequence((a, b))`: [ListElementContent]
*
* --Step 3-->
*
* `TIterableElement((a, b))`: []
*
* --Step 4-->
*
* `(a, b)`: [TupleElementContent(0)]
*
* --Step 5a-->
*
* `a`: []
*
* Meaning there is data-flow from the RHS to `a` (an over approximation). The same logic would be applied to show there is data-flow to `b`. Note that _Step 3_ and _Step 4_ would not have been needed if the RHS had been a tuple (since that would have been able to use _Step 2_ instead).
*
* Another, more complicated example:
* ```python
* (a, [b, *c]) = ["a", [SOURCE]]
* ```
* where the path to `c` is
*
* `["a", [SOURCE]]`: [ListElementContent; ListElementContent]
*
* --Step 1-->
*
* `TIterableSequence((a, [b, *c]))`: [ListElementContent; ListElementContent]
*
* --Step 3-->
*
* `TIterableElement((a, [b, *c]))`: [ListElementContent]
*
* --Step 4-->
*
* `(a, [b, *c])`: [TupleElementContent(1); ListElementContent]
*
* --Step 5b-->
*
* `TIterableSequence([b, *c])`: [ListElementContent]
*
* --Step 3-->
*
* `TIterableElement([b, *c])`: []
*
* --Step 4-->
*
* `[b, *c]`: [TupleElementContent(1)]
*
* --Step 5c-->
*
* `TIterableElement(c)`: []
*
* --Step 6-->
*
* `c`: [ListElementContent]
*/
module UnpackingAssignment {
/** A direct (or top-level) target of an unpacking assignment. */
class UnpackingAssignmentDirectTarget extends ControlFlowNode {
Expr value;
UnpackingAssignmentDirectTarget() {
this instanceof SequenceNode and
exists(Assign assign | this.getNode() = assign.getATarget() | value = assign.getValue())
}
Expr getValue() { result = value }
}
/** A (possibly recursive) target of an unpacking assignment. */
class UnpackingAssignmentTarget extends ControlFlowNode {
UnpackingAssignmentTarget() {
this instanceof UnpackingAssignmentDirectTarget
or
this = any(UnpackingAssignmentSequenceTarget parent).getAnElement()
}
}
/** A (possibly recursive) target of an unpacking assignment which is also a sequence. */
class UnpackingAssignmentSequenceTarget extends UnpackingAssignmentTarget {
UnpackingAssignmentSequenceTarget() { this instanceof SequenceNode }
ControlFlowNode getElement(int i) { result = this.(SequenceNode).getElement(i) }
ControlFlowNode getAnElement() { result = this.getElement(_) }
}
/**
* Step 2
* Data flows from `TIterableSequence(sequence)` to `sequence`
*/
predicate unpackingAssignmentFlowStep(Node nodeFrom, Node nodeTo) {
exists(UnpackingAssignmentSequenceTarget target |
nodeFrom = TIterableSequenceNode(target) and
nodeTo.asCfgNode() = target
)
}
/**
* Step 3
* Data flows from `TIterableSequence(sequence)` into `TIterableElement(sequence)`.
* As `sequence` is modeled as a tuple, we will not read tuple content as that would allow
* crosstalk.
*/
predicate unpackingAssignmentConvertingReadStep(Node nodeFrom, Content c, Node nodeTo) {
exists(UnpackingAssignmentSequenceTarget target |
nodeFrom = TIterableSequenceNode(target) and
nodeTo = TIterableElementNode(target) and
(
c instanceof ListElementContent
or
c instanceof SetElementContent
// TODO: dict content in iterable unpacking not handled
)
)
}
/**
* Step 4
* Data flows from `TIterableElement(sequence)` to `sequence`.
* Content type is `TupleElementContent` with indices taken from the syntax.
* For instance, if `sequence` is `(a, *b, c)`, content is written to index 0, 1, and 2.
*/
predicate unpackingAssignmentConvertingStoreStep(Node nodeFrom, Content c, Node nodeTo) {
exists(UnpackingAssignmentSequenceTarget target |
nodeFrom = TIterableElementNode(target) and
nodeTo.asCfgNode() = target and
exists(int index | exists(target.getElement(index)) |
c.(TupleElementContent).getIndex() = index
)
)
}
/**
* Step 5
* For a sequence node inside an iterable unpacking, data flows from the sequence to its elements. There are
* three cases for what `toNode` should be:
* a) If the element is a plain variable, `toNode` is the corresponding essa node.
*
* b) If the element is itself a sequence, with control-flow node `seq`, `toNode` is `TIterableSequence(seq)`.
*
* c) If the element is a starred variable, with control-flow node `v`, `toNode` is `TIterableElement(v)`.
*/
predicate unpackingAssignmentElementReadStep(Node nodeFrom, Content c, Node nodeTo) {
exists(
UnpackingAssignmentSequenceTarget target, int index, ControlFlowNode element, int starIndex
|
target.getElement(starIndex) instanceof StarredNode
or
not exists(target.getAnElement().(StarredNode)) and
starIndex = -1
|
nodeFrom.asCfgNode() = target and
element = target.getElement(index) and
(
if starIndex = -1 or index < starIndex
then c.(TupleElementContent).getIndex() = index
else
// This could get big if big tuples exist
if index = starIndex
then c.(TupleElementContent).getIndex() >= index
else c.(TupleElementContent).getIndex() >= index - 1
) and
(
if element instanceof SequenceNode
then
// Step 5b
nodeTo = TIterableSequenceNode(element)
else
if element instanceof StarredNode
then
// Step 5c
nodeTo = TIterableElementNode(element)
else
// Step 5a
nodeTo.asVar().getDefinition().(MultiAssignmentDefinition).getDefiningNode() = element
)
)
}
/**
* Step 6
* Data flows from `TIterableElement(v)` to the essa variable for `v`, with
* content type `ListElementContent`.
*/
predicate unpackingAssignmentStarredElementStoreStep(Node nodeFrom, Content c, Node nodeTo) {
exists(ControlFlowNode starred | starred.getNode() instanceof Starred |
nodeFrom = TIterableElementNode(starred) and
nodeTo.asVar().getDefinition().(MultiAssignmentDefinition).getDefiningNode() = starred and
c instanceof ListElementContent
)
}
/** All read steps associated with unpacking assignment. */
predicate unpackingAssignmentReadStep(Node nodeFrom, Content c, Node nodeTo) {
unpackingAssignmentElementReadStep(nodeFrom, c, nodeTo)
or
unpackingAssignmentConvertingReadStep(nodeFrom, c, nodeTo)
}
/** All store steps associated with unpacking assignment. */
predicate unpackingAssignmentStoreStep(Node nodeFrom, Content c, Node nodeTo) {
unpackingAssignmentStarredElementStoreStep(nodeFrom, c, nodeTo)
or
unpackingAssignmentConvertingStoreStep(nodeFrom, c, nodeTo)
}
}
import UnpackingAssignment
/** Data flows from a sequence to a call to `pop` on the sequence. */
predicate popReadStep(CfgNode nodeFrom, Content c, CfgNode nodeTo) {
// set.pop or list.pop
@@ -1092,7 +1477,7 @@ predicate attributeReadStep(CfgNode nodeFrom, AttributeContent c, CfgNode nodeTo
predicate kwUnpackReadStep(CfgNode nodeFrom, DictionaryElementContent c, Node nodeTo) {
exists(CallNode call, CallableValue callable, string name |
nodeFrom.asCfgNode() = call.getNode().getKwargs().getAFlowNode() and
nodeTo = TKwUnpacked(call, callable, name) and
nodeTo = TKwUnpackedNode(call, callable, name) and
name = c.getKey()
)
}

View File

@@ -58,9 +58,18 @@ newtype TNode =
* That is, `call` contains argument `**{"foo": bar}` which is passed
* to parameter `foo` of `callable`.
*/
TKwUnpacked(CallNode call, CallableValue callable, string name) {
TKwUnpackedNode(CallNode call, CallableValue callable, string name) {
call_unpacks(call, _, callable, name, _)
}
} or
/**
* A synthetic node representing that an iterable sequence flows to consumer.
*/
TIterableSequenceNode(UnpackingAssignmentSequenceTarget consumer) or
/**
* A synthetic node representing that there may be an iterable element
* for `consumer` to consume.
*/
TIterableElementNode(UnpackingAssignmentTarget consumer)
/** Helper for `Node::getEnclosingCallable`. */
private DataFlowCallable getCallableScope(Scope s) {
@@ -179,7 +188,12 @@ ExprNode exprNode(DataFlowExpr e) { result.getNode().getNode() = e }
class ParameterNode extends CfgNode {
ParameterDefinition def;
ParameterNode() { node = def.getDefiningNode() }
ParameterNode() {
node = def.getDefiningNode() and
// Disregard parameters that we cannot resolve
// TODO: Make this unnecessary
exists(DataFlowCallable c | node = c.getParameter(_))
}
/**
* Holds if this node is the parameter of callable `c` at the
@@ -193,6 +207,17 @@ class ParameterNode extends CfgNode {
Parameter getParameter() { result = def.getParameter() }
}
/** A data flow node that represents a call argument. */
class ArgumentNode extends Node {
ArgumentNode() { this = any(DataFlowCall c).getArg(_) }
/** Holds if this argument occurs at the given position in the given call. */
predicate argumentOf(DataFlowCall call, int pos) { this = call.getArg(pos) }
/** Gets the call in which this node is an argument. */
final DataFlowCall getCall() { this.argumentOf(result, _) }
}
/**
* A node associated with an object after an operation that might have
* changed its state.
@@ -322,11 +347,11 @@ class KwOverflowNode extends Node, TKwOverflowNode {
* The node representing the synthetic argument of a call that is unpacked from a dictionary
* argument.
*/
class KwUnpacked extends Node, TKwUnpacked {
class KwUnpackedNode extends Node, TKwUnpackedNode {
CallNode call;
string name;
KwUnpacked() { this = TKwUnpacked(call, _, name) }
KwUnpackedNode() { this = TKwUnpackedNode(call, _, name) }
override string toString() { result = "KwUnpacked " + name }
@@ -340,6 +365,42 @@ class KwUnpacked extends Node, TKwUnpacked {
override Location getLocation() { result = call.getLocation() }
}
/**
* A synthetic node representing an iterable sequence. Used for changing content type
* for instance from a `ListElement` to a `TupleElement`, especially if the content is
* transferred via a read step which cannot be broken up into a read and a store. The
* read step then targets TIterableSequence, and the conversion can happen via a read
* step to TIterableElement followed by a store step to the target.
*/
class IterableSequenceNode extends Node, TIterableSequenceNode {
CfgNode consumer;
IterableSequenceNode() { this = TIterableSequenceNode(consumer.getNode()) }
override string toString() { result = "IterableSequence" }
override DataFlowCallable getEnclosingCallable() { result = consumer.getEnclosingCallable() }
override Location getLocation() { result = consumer.getLocation() }
}
/**
* A synthetic node representing an iterable element. Used for changing content type
* for instance from a `ListElement` to a `TupleElement`. This would happen via a
* read step from the list to IterableElement followed by a store step to the tuple.
*/
class IterableElementNode extends Node, TIterableElementNode {
CfgNode consumer;
IterableElementNode() { this = TIterableElementNode(consumer.getNode()) }
override string toString() { result = "IterableElement" }
override DataFlowCallable getEnclosingCallable() { result = consumer.getEnclosingCallable() }
override Location getLocation() { result = consumer.getLocation() }
}
/**
* A node that controls whether other nodes are evaluated.
*/

View File

@@ -68,5 +68,11 @@ Node importNode(string name) {
// Because named imports are modelled as `AttrRead`s, the statement `from foo import bar as baz`
// is interpreted as if it was an assignment `baz = foo.bar`, which means `baz` gets tracked as a
// reference to `foo.bar`, as desired.
result.asCfgNode().getNode() = any(ImportExpr i | i.getName() = name)
exists(ImportExpr imp_expr |
imp_expr.getName() = name and
result.asCfgNode().getNode() = imp_expr and
// in `import foo.bar` we DON'T want to give a result for `importNode("foo.bar")`,
// only for `importNode("foo")`. We exclude those cases with the following clause.
not exists(Import imp | imp.getAName().getValue() = imp_expr)
)
}

View File

@@ -1938,7 +1938,23 @@ private module Django {
private class DjangoUrlsRePathCall extends DjangoRegexRouteSetup {
override CallNode node;
DjangoUrlsRePathCall() { node.getFunction() = django::urls::re_path().asCfgNode() }
DjangoUrlsRePathCall() {
node.getFunction() = django::urls::re_path().asCfgNode() and
// `django.conf.urls.url` (which we support directly with
// `DjangoConfUrlsUrlCall`), is implemented in Django 2+ as backward compatibility
// using `django.urls.re_path`. See
// https://github.com/django/django/blob/stable/3.2.x/django/conf/urls/__init__.py#L22
// Since we're still installing dependencies and analyzing their source code,
// without explicitly filtering out this call, we would be double-counting such
// route-setups :( One practical negative side effect of double-counting it, is
// that since we can't figure out the URL in the library code calling `django.urls.re_path`
// (because we only consider local flow), we will for all those cases mark ANY parameter
// as being a routed-parameter, which can lead to FPs.
not exists(Module mod |
mod.getName() = "django.conf.urls.__init__" and
node.getEnclosingModule() = mod
)
}
override DataFlow::Node getUrlPatternArg() {
result.asCfgNode() = [node.getArg(0), node.getArgByName("route")]

View File

@@ -227,6 +227,17 @@ private module Tornado {
/** Gets a reference the `redirect` method. */
DataFlow::Node redirectMethod() { result = redirectMethod(DataFlow::TypeTracker::end()) }
/** Gets a reference to the `write` method. */
private DataFlow::Node writeMethod(DataFlow::TypeTracker t) {
t.startInAttr("write") and
result = instance()
or
exists(DataFlow::TypeTracker t2 | result = writeMethod(t2).track(t2, t))
}
/** Gets a reference to the `write` method. */
DataFlow::Node writeMethod() { result = writeMethod(DataFlow::TypeTracker::end()) }
private class AdditionalTaintStep extends TaintTracking::AdditionalTaintStep {
override predicate step(DataFlow::Node nodeFrom, DataFlow::Node nodeTo) {
// Method access
@@ -575,6 +586,26 @@ private module Tornado {
override DataFlow::Node getBody() { none() }
override string getMimetypeDefault() { none() }
}
/**
* A call to `tornado.web.RequestHandler.write` method.
*
* See https://www.tornadoweb.org/en/stable/web.html?highlight=write#tornado.web.RequestHandler.write
*/
private class TornadoRequestHandlerWriteCall extends HTTP::Server::HttpResponse::Range,
DataFlow::CfgNode {
override CallNode node;
TornadoRequestHandlerWriteCall() {
node.getFunction() = tornado::web::RequestHandler::writeMethod().asCfgNode()
}
override DataFlow::Node getBody() {
result.asCfgNode() in [node.getArg(0), node.getArgByName("chunk")]
}
override string getMimetypeDefault() { result = "text/html" }
override DataFlow::Node getMimetypeOrContentTypeArg() { none() }
}

View File

@@ -720,6 +720,9 @@ abstract class FunctionValue extends CallableValue {
/** Gets a class that this function may return */
abstract ClassValue getAnInferredReturnType();
/** Holds if this function represents a lambda. */
predicate isLambda() { this.getOrigin().getNode() instanceof Lambda }
}
/** Class representing Python functions */