Rangeanalysis: Copy C++ ModulusAnalysis file verbatim.

This commit is contained in:
Anders Schack-Mulligen
2023-10-27 15:17:34 +02:00
parent 6d859daf3d
commit 8e2b17cd86

View File

@@ -0,0 +1,328 @@
/**
* Provides inferences of the form: `e` equals `b + v` modulo `m` where `e` is
* an expression, `b` is a `Bound` (typically zero or the value of an SSA
* variable), and `v` is an integer in the range `[0 .. m-1]`.
*/
/*
* The main recursion has base cases in both `ssaModulus` (for guarded reads) and `semExprModulus`
* (for constant values). The most interesting recursive case is `phiModulusRankStep`, which
* handles phi inputs.
*/
private import ModulusAnalysisSpecific::Private
private import semmle.code.cpp.rangeanalysis.new.internal.semantic.Semantic
private import semmle.code.cpp.rangeanalysis.new.internal.semantic.SemanticLocation
private import ConstantAnalysis
private import RangeUtils
private import codeql.rangeanalysis.RangeAnalysis
private import RangeAnalysisImpl
module ModulusAnalysis<DeltaSig D, BoundSig<SemLocation, Sem, D> Bounds, UtilSig<Sem, D> U> {
pragma[nomagic]
private predicate valueFlowStepSsaEqFlowCond(
SemSsaReadPosition pos, SemSsaVariable v, SemExpr e, int delta
) {
exists(SemGuard guard, boolean testIsTrue |
guard = U::semEqFlowCond(v, e, D::fromInt(delta), true, testIsTrue) and
semGuardDirectlyControlsSsaRead(guard, pos, testIsTrue)
)
}
/**
* Holds if `e + delta` equals `v` at `pos`.
*/
pragma[nomagic]
private predicate valueFlowStepSsa(SemSsaVariable v, SemSsaReadPosition pos, SemExpr e, int delta) {
U::semSsaUpdateStep(v, e, D::fromInt(delta)) and pos.hasReadOfVar(v)
or
pos.hasReadOfVar(v) and
valueFlowStepSsaEqFlowCond(pos, v, e, delta)
}
/**
* Holds if `add` is the addition of `larg` and `rarg`, neither of which are
* `ConstantIntegerExpr`s.
*/
private predicate nonConstAddition(SemExpr add, SemExpr larg, SemExpr rarg) {
exists(SemAddExpr a | a = add |
larg = a.getLeftOperand() and
rarg = a.getRightOperand()
) and
not larg instanceof SemConstantIntegerExpr and
not rarg instanceof SemConstantIntegerExpr
}
/**
* Holds if `sub` is the subtraction of `larg` and `rarg`, where `rarg` is not
* a `ConstantIntegerExpr`.
*/
private predicate nonConstSubtraction(SemExpr sub, SemExpr larg, SemExpr rarg) {
exists(SemSubExpr s | s = sub |
larg = s.getLeftOperand() and
rarg = s.getRightOperand()
) and
not rarg instanceof SemConstantIntegerExpr
}
/** Gets an expression that is the remainder modulo `mod` of `arg`. */
private SemExpr modExpr(SemExpr arg, int mod) {
exists(SemRemExpr rem |
result = rem and
arg = rem.getLeftOperand() and
rem.getRightOperand().(SemConstantIntegerExpr).getIntValue() = mod and
mod >= 2
)
or
exists(SemConstantIntegerExpr c |
mod = 2.pow([1 .. 30]) and
c.getIntValue() = mod - 1 and
result.(SemBitAndExpr).hasOperands(arg, c)
)
}
/**
* Gets a guard that tests whether `v` is congruent with `val` modulo `mod` on
* its `testIsTrue` branch.
*/
private SemGuard moduloCheck(SemSsaVariable v, int val, int mod, boolean testIsTrue) {
exists(SemExpr rem, SemConstantIntegerExpr c, int r, boolean polarity |
result.isEquality(rem, c, polarity) and
c.getIntValue() = r and
rem = modExpr(v.getAUse(), mod) and
(
testIsTrue = polarity and val = r
or
testIsTrue = polarity.booleanNot() and
mod = 2 and
val = 1 - r and
(r = 0 or r = 1)
)
)
}
/**
* Holds if a guard ensures that `v` at `pos` is congruent with `val` modulo `mod`.
*/
private predicate moduloGuardedRead(SemSsaVariable v, SemSsaReadPosition pos, int val, int mod) {
exists(SemGuard guard, boolean testIsTrue |
pos.hasReadOfVar(v) and
guard = moduloCheck(v, val, mod, testIsTrue) and
semGuardControlsSsaRead(guard, pos, testIsTrue)
)
}
/** Holds if `factor` is a power of 2 that divides `mask`. */
bindingset[mask]
private predicate andmaskFactor(int mask, int factor) {
mask % factor = 0 and
factor = 2.pow([1 .. 30])
}
/** Holds if `e` is evenly divisible by `factor`. */
private predicate evenlyDivisibleExpr(SemExpr e, int factor) {
exists(SemConstantIntegerExpr c, int k | k = c.getIntValue() |
e.(SemMulExpr).getAnOperand() = c and factor = k.abs() and factor >= 2
or
e.(SemShiftLeftExpr).getRightOperand() = c and factor = 2.pow(k) and k > 0
or
e.(SemBitAndExpr).getAnOperand() = c and factor = max(int f | andmaskFactor(k, f))
)
}
/**
* Gets the remainder of `val` modulo `mod`.
*
* For `mod = 0` the result equals `val` and for `mod > 1` the result is within
* the range `[0 .. mod-1]`.
*/
bindingset[val, mod]
private int remainder(int val, int mod) {
mod = 0 and result = val
or
mod > 1 and result = ((val % mod) + mod) % mod
}
/**
* Holds if `inp` is an input to `phi` and equals `phi` modulo `mod` along `edge`.
*/
private predicate phiSelfModulus(
SemSsaPhiNode phi, SemSsaVariable inp, SemSsaReadPositionPhiInputEdge edge, int mod
) {
exists(Bounds::SemSsaBound phibound, int v, int m |
edge.phiInput(phi, inp) and
phibound.getVariable() = phi and
ssaModulus(inp, edge, phibound, v, m) and
mod = m.gcd(v) and
mod != 1
)
}
/**
* Holds if `b + val` modulo `mod` is a candidate congruence class for `phi`.
*/
private predicate phiModulusInit(SemSsaPhiNode phi, Bounds::SemBound b, int val, int mod) {
exists(SemSsaVariable inp, SemSsaReadPositionPhiInputEdge edge |
edge.phiInput(phi, inp) and
ssaModulus(inp, edge, b, val, mod)
)
}
/**
* Holds if all inputs to `phi` numbered `1` to `rix` are equal to `b + val` modulo `mod`.
*/
pragma[nomagic]
private predicate phiModulusRankStep(
SemSsaPhiNode phi, Bounds::SemBound b, int val, int mod, int rix
) {
/*
* base case. If any phi input is equal to `b + val` modulo `mod`, that's a potential congruence
* class for the phi node.
*/
rix = 0 and
phiModulusInit(phi, b, val, mod)
or
exists(SemSsaVariable inp, SemSsaReadPositionPhiInputEdge edge, int v1, int m1 |
mod != 1 and
val = remainder(v1, mod)
|
/*
* Recursive case. If `inp` = `b + v2` mod `m2`, we combine that with the preceding potential
* congruence class `b + v1` mod `m1`. The result will be the congruence class of `v1` modulo
* the greatest common denominator of `m1`, `m2`, and `v1 - v2`.
*/
exists(int v2, int m2 |
rankedPhiInput(pragma[only_bind_out](phi), inp, edge, rix) and
phiModulusRankStep(phi, b, v1, m1, rix - 1) and
ssaModulus(inp, edge, b, v2, m2) and
mod = m1.gcd(m2).gcd(v1 - v2)
)
or
/*
* Recursive case. If `inp` = `phi` mod `m2`, we combine that with the preceding potential
* congruence class `b + v1` mod `m1`. The result will be a congruence class modulo the greatest
* common denominator of `m1` and `m2`.
*/
exists(int m2 |
rankedPhiInput(phi, inp, edge, rix) and
phiModulusRankStep(phi, b, v1, m1, rix - 1) and
phiSelfModulus(phi, inp, edge, m2) and
mod = m1.gcd(m2)
)
)
}
/**
* Holds if `phi` is equal to `b + val` modulo `mod`.
*/
private predicate phiModulus(SemSsaPhiNode phi, Bounds::SemBound b, int val, int mod) {
exists(int r |
maxPhiInputRank(phi, r) and
phiModulusRankStep(phi, b, val, mod, r)
)
}
/**
* Holds if `v` at `pos` is equal to `b + val` modulo `mod`.
*/
private predicate ssaModulus(
SemSsaVariable v, SemSsaReadPosition pos, Bounds::SemBound b, int val, int mod
) {
phiModulus(v, b, val, mod) and pos.hasReadOfVar(v)
or
b.(Bounds::SemSsaBound).getVariable() = v and pos.hasReadOfVar(v) and val = 0 and mod = 0
or
exists(SemExpr e, int val0, int delta |
semExprModulus(e, b, val0, mod) and
valueFlowStepSsa(v, pos, e, delta) and
val = remainder(val0 + delta, mod)
)
or
moduloGuardedRead(v, pos, val, mod) and b instanceof Bounds::SemZeroBound
}
/**
* Holds if `e` is equal to `b + val` modulo `mod`.
*
* There are two cases for the modulus:
* - `mod = 0`: The equality `e = b + val` is an ordinary equality.
* - `mod > 1`: `val` lies within the range `[0 .. mod-1]`.
*/
cached
predicate semExprModulus(SemExpr e, Bounds::SemBound b, int val, int mod) {
not ignoreExprModulus(e) and
(
e = b.getExpr(D::fromInt(val)) and mod = 0
or
evenlyDivisibleExpr(e, mod) and
val = 0 and
b instanceof Bounds::SemZeroBound
or
exists(SemSsaVariable v, SemSsaReadPositionBlock bb |
ssaModulus(v, bb, b, val, mod) and
e = v.getAUse() and
bb.getAnExpr() = e
)
or
exists(SemExpr mid, int val0, int delta |
semExprModulus(mid, b, val0, mod) and
U::semValueFlowStep(e, mid, D::fromInt(delta)) and
val = remainder(val0 + delta, mod)
)
or
exists(SemConditionalExpr cond, int v1, int v2, int m1, int m2 |
cond = e and
condExprBranchModulus(cond, true, b, v1, m1) and
condExprBranchModulus(cond, false, b, v2, m2) and
mod = m1.gcd(m2).gcd(v1 - v2) and
mod != 1 and
val = remainder(v1, mod)
)
or
exists(Bounds::SemBound b1, Bounds::SemBound b2, int v1, int v2, int m1, int m2 |
addModulus(e, true, b1, v1, m1) and
addModulus(e, false, b2, v2, m2) and
mod = m1.gcd(m2) and
mod != 1 and
val = remainder(v1 + v2, mod)
|
b = b1 and b2 instanceof Bounds::SemZeroBound
or
b = b2 and b1 instanceof Bounds::SemZeroBound
)
or
exists(int v1, int v2, int m1, int m2 |
subModulus(e, true, b, v1, m1) and
subModulus(e, false, any(Bounds::SemZeroBound zb), v2, m2) and
mod = m1.gcd(m2) and
mod != 1 and
val = remainder(v1 - v2, mod)
)
)
}
private predicate condExprBranchModulus(
SemConditionalExpr cond, boolean branch, Bounds::SemBound b, int val, int mod
) {
semExprModulus(cond.getBranchExpr(branch), b, val, mod)
}
private predicate addModulus(SemExpr add, boolean isLeft, Bounds::SemBound b, int val, int mod) {
exists(SemExpr larg, SemExpr rarg | nonConstAddition(add, larg, rarg) |
semExprModulus(larg, b, val, mod) and isLeft = true
or
semExprModulus(rarg, b, val, mod) and isLeft = false
)
}
private predicate subModulus(SemExpr sub, boolean isLeft, Bounds::SemBound b, int val, int mod) {
exists(SemExpr larg, SemExpr rarg | nonConstSubtraction(sub, larg, rarg) |
semExprModulus(larg, b, val, mod) and isLeft = true
or
semExprModulus(rarg, b, val, mod) and isLeft = false
)
}
}