Crypto: Add jca unit tests.

This commit is contained in:
REDMOND\brodes
2025-10-03 13:32:02 -04:00
parent f4fea6d635
commit 66e9d7671d
29 changed files with 10556 additions and 0 deletions

View File

@@ -0,0 +1,364 @@
package com.example.crypto.algorithms;
// import org.bouncycastle.jce.provider.BouncyCastleProvider;
import java.security.*;
import javax.crypto.Cipher;
import javax.crypto.KeyGenerator;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.spec.GCMParameterSpec;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;
import java.security.SecureRandom;
import java.util.Arrays;
import java.util.Base64;
/**
* SymmetricAlgorithmTest demonstrates various symmetric encryption flows and
* key derivation
* scenarios that can be analyzed by SAST tools.
*
* It includes:
* 1) AES-GCM encryption with random nonce (secure).
* 2) AES-GCM encryption with fixed nonce (insecure).
* 3) AES-CBC encryption with random IV (secure).
* 4) AES-ECB encryption (insecure).
* 5) RC4 encryption (insecure).
* 6) DES and TripleDES encryption (insecure/weak).
* 7) ChaCha20 encryption (secure, if available).
* 8) KMAC-based key derivation used to derive a key for AES encryption.
* 9) Dynamic symmetric encryption selection based on configuration.
* 10) Further use: deriving two keys from symmetric key material via PBKDF2.
*
* SAST/CBOM notes:
* - Nonce/IV reuse (e.g., fixed nonce) must be flagged.
* - Insecure algorithms (RC4, DES, TripleDES, AES/ECB) are marked as unsafe.
* - Dynamic selection may lead to insecure fallback if misconfigured.
*/
public class SymmetricAlgorithm {
// static {
// Security.addProvider(new BouncyCastleProvider());
// }
// ---------- Secure Symmetric Encryption Flows ----------
/**
* AES-GCM encryption using a 12-byte random nonce.
* SAST: AES-GCM is secure when a unique nonce is used per encryption.
*
* @param key The AES key.
* @param plaintext The plaintext to encrypt.
* @return The IV prepended to the ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] aesGcmEncryptSafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
byte[] iv = new byte[12]; // Recommended 12-byte nonce for GCM.
new SecureRandom().nextBytes(iv);
GCMParameterSpec spec = new GCMParameterSpec(128, iv);
cipher.init(Cipher.ENCRYPT_MODE, key, spec);
byte[] ciphertext = cipher.doFinal(plaintext);
byte[] output = new byte[iv.length + ciphertext.length];
System.arraycopy(iv, 0, output, 0, iv.length);
System.arraycopy(ciphertext, 0, output, iv.length, ciphertext.length);
return output;
}
/**
* AES-GCM encryption using a fixed (constant) nonce.
* SAST: Fixed nonce reuse in AES-GCM is insecure as it destroys
* confidentiality.
*
* @param key The AES key.
* @param plaintext The plaintext to encrypt.
* @return The fixed IV prepended to the ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] aesGcmEncryptUnsafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
byte[] iv = new byte[12]; // Fixed IV (all zeros by default) insecure.
GCMParameterSpec spec = new GCMParameterSpec(128, iv);
cipher.init(Cipher.ENCRYPT_MODE, key, spec);
byte[] ciphertext = cipher.doFinal(plaintext);
byte[] output = new byte[iv.length + ciphertext.length];
System.arraycopy(iv, 0, output, 0, iv.length);
System.arraycopy(ciphertext, 0, output, iv.length, ciphertext.length);
return output;
}
/**
* AES-CBC encryption using a random IV.
* SAST: AES-CBC is secure if IVs are random and not reused.
*
* @param key The AES key.
* @param plaintext The plaintext to encrypt.
* @return The IV prepended to the ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] aesCbcEncryptSafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("AES/CBC/PKCS5Padding");
byte[] iv = new byte[16]; // 16-byte IV for AES block size.
new SecureRandom().nextBytes(iv);
IvParameterSpec ivSpec = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);
byte[] ciphertext = cipher.doFinal(plaintext);
byte[] output = new byte[iv.length + ciphertext.length];
System.arraycopy(iv, 0, output, 0, iv.length);
System.arraycopy(ciphertext, 0, output, iv.length, ciphertext.length);
return output;
}
/**
* AES-ECB encryption.
* SAST: ECB mode is insecure as it does not use an IV, revealing data patterns.
*
* @param key The AES key.
* @param plaintext The plaintext to encrypt.
* @return The ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] aesEcbEncryptUnsafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");
cipher.init(Cipher.ENCRYPT_MODE, key);
return cipher.doFinal(plaintext);
}
// ---------- Other Symmetric Algorithms ----------
/**
* RC4 encryption.
* SAST: RC4 is deprecated due to vulnerabilities.
*
* @param key The RC4 key.
* @param plaintext The plaintext to encrypt.
* @return The ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] rc4EncryptUnsafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("RC4");
cipher.init(Cipher.ENCRYPT_MODE, key);
return cipher.doFinal(plaintext);
}
/**
* DES encryption.
* SAST: DES is insecure due to its 56-bit effective key size.
*
* @param key The DES key.
* @param plaintext The plaintext to encrypt.
* @return The IV prepended to the ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] desEncryptUnsafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("DES/CBC/PKCS5Padding");
byte[] iv = new byte[8];
new SecureRandom().nextBytes(iv);
IvParameterSpec ivSpec = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);
byte[] ciphertext = cipher.doFinal(plaintext);
byte[] output = new byte[iv.length + ciphertext.length];
System.arraycopy(iv, 0, output, 0, iv.length);
System.arraycopy(ciphertext, 0, output, iv.length, ciphertext.length);
return output;
}
/**
* TripleDES (DESede) encryption.
* SAST: TripleDES is weak by modern standards and is deprecated.
*
* @param key The TripleDES key.
* @param plaintext The plaintext to encrypt.
* @return The IV prepended to the ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] tripleDesEncryptUnsafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("DESede/CBC/PKCS5Padding");
byte[] iv = new byte[8];
new SecureRandom().nextBytes(iv);
IvParameterSpec ivSpec = new IvParameterSpec(iv);
cipher.init(Cipher.ENCRYPT_MODE, key, ivSpec);
byte[] ciphertext = cipher.doFinal(plaintext);
byte[] output = new byte[iv.length + ciphertext.length];
System.arraycopy(iv, 0, output, 0, iv.length);
System.arraycopy(ciphertext, 0, output, iv.length, ciphertext.length);
return output;
}
/**
* ChaCha20 encryption.
* SAST: ChaCha20 is considered secure and is a modern alternative to AES.
*
* @param key The ChaCha20 key.
* @param plaintext The plaintext to encrypt.
* @return The nonce prepended to the ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] chacha20EncryptSafe(SecretKey key, byte[] plaintext) throws Exception {
Cipher cipher = Cipher.getInstance("ChaCha20", "BC");
byte[] nonce = new byte[12]; // ChaCha20 typically uses a 12-byte nonce.
new SecureRandom().nextBytes(nonce);
// ChaCha20 may require an IvParameterSpec for the nonce.
cipher.init(Cipher.ENCRYPT_MODE, key, new IvParameterSpec(nonce));
byte[] ciphertext = cipher.doFinal(plaintext);
byte[] output = new byte[nonce.length + ciphertext.length];
System.arraycopy(nonce, 0, output, 0, nonce.length);
System.arraycopy(ciphertext, 0, output, nonce.length, ciphertext.length);
return output;
}
/**
* KMAC-based flow: Uses KMAC128 to derive key material for AES encryption.
* SAST: KMAC128 is secure as part of the SHA-3 family when used correctly.
*
* @param key The KMAC key.
* @param plaintext The plaintext to encrypt.
* @return The ciphertext (with IV) resulting from encryption with a derived
* key.
* @throws Exception if encryption fails.
*/
public byte[] kmacEncryptFlow(SecretKey key, byte[] plaintext) throws Exception {
Mac kmac = Mac.getInstance("KMAC128", "BC");
kmac.init(key);
byte[] kmacOutput = kmac.doFinal(plaintext);
// Use the first 16 bytes of KMAC output as an AES key.
SecretKey derivedKey = new SecretKeySpec(kmacOutput, 0, 16, "AES");
Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
byte[] iv = new byte[12];
new SecureRandom().nextBytes(iv);
GCMParameterSpec spec = new GCMParameterSpec(128, iv);
cipher.init(Cipher.ENCRYPT_MODE, derivedKey, spec);
byte[] ciphertext = cipher.doFinal(plaintext);
byte[] output = new byte[iv.length + ciphertext.length];
System.arraycopy(iv, 0, output, 0, iv.length);
System.arraycopy(ciphertext, 0, output, iv.length, ciphertext.length);
return output;
}
// ---------- Dynamic Algorithm Selection ----------
/**
* Dynamically selects a symmetric encryption algorithm based on a configuration
* property.
* If the algorithm is unknown or ambiguous, falls back to an insecure default
* (AES/ECB).
*
* SAST: Dynamic selection introduces a known unknown risk.
*
* @param algorithm The algorithm name from configuration.
* @param key The symmetric key.
* @param plaintext The plaintext to encrypt.
* @return The ciphertext.
* @throws Exception if encryption fails.
*/
public byte[] dynamicSymmetricEncryption(String algorithm, SecretKey key, byte[] plaintext) throws Exception {
if ("AES/GCM/NoPadding".equalsIgnoreCase(algorithm)) {
return aesGcmEncryptSafe(key, plaintext);
} else if ("AES/CBC/PKCS5Padding".equalsIgnoreCase(algorithm)) {
return aesCbcEncryptSafe(key, plaintext);
} else if ("AES/ECB/PKCS5Padding".equalsIgnoreCase(algorithm)) {
return aesEcbEncryptUnsafe(key, plaintext);
} else if ("RC4".equalsIgnoreCase(algorithm)) {
return rc4EncryptUnsafe(key, plaintext);
} else if ("ChaCha20".equalsIgnoreCase(algorithm)) {
return chacha20EncryptSafe(key, plaintext);
} else {
// Unknown algorithm: fallback to insecure AES/ECB.
return aesEcbEncryptUnsafe(key, plaintext);
}
}
// ---------- Further Use of Symmetric Keys ----------
/**
* Derives a key from an input key by simple truncation.
* SAST: This approach is ambiguous; a proper KDF should be used.
*
* @param key The input symmetric key.
* @return A derived 128-bit key.
*/
public byte[] deriveKeyFromKey(SecretKey key) {
byte[] keyBytes = key.getEncoded();
return Arrays.copyOf(keyBytes, 16);
}
/**
* Further use: Derives two separate keys from a symmetric key using PBKDF2,
* then uses one key for encryption and one for MACing ciphertext.
* SAST: This key-splitting approach is acceptable if PBKDF2 is used securely.
*
* @param key The input key material.
* @param plaintext The plaintext to encrypt.
* @return The concatenated ciphertext and its MAC.
* @throws Exception if key derivation or encryption fails.
*/
public byte[] furtherUseSymmetricKeyForKeyDerivation(SecretKey key, byte[] plaintext) throws Exception {
String keyAsString = Base64.getEncoder().encodeToString(key.getEncoded());
byte[] salt = generateSalt(16);
PBEKeySpec spec = new PBEKeySpec(keyAsString.toCharArray(), salt, 10000, 256);
SecretKeyFactory factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA256");
byte[] derived = factory.generateSecret(spec).getEncoded();
byte[] encKeyBytes = Arrays.copyOfRange(derived, 0, 16);
byte[] macKeyBytes = Arrays.copyOfRange(derived, 16, 32);
SecretKey encKey = new SecretKeySpec(encKeyBytes, "AES");
SecretKey derivedMacKey = new SecretKeySpec(macKeyBytes, "HmacSHA256");
Cipher cipher = Cipher.getInstance("AES/GCM/NoPadding");
byte[] iv = new byte[12];
new SecureRandom().nextBytes(iv);
cipher.init(Cipher.ENCRYPT_MODE, encKey, new GCMParameterSpec(128, iv));
byte[] ciphertext = cipher.doFinal(plaintext);
Mac mac = Mac.getInstance("HmacSHA256");
mac.init(derivedMacKey);
byte[] computedMac = mac.doFinal(ciphertext);
byte[] output = new byte[ciphertext.length + computedMac.length];
System.arraycopy(ciphertext, 0, output, 0, ciphertext.length);
System.arraycopy(computedMac, 0, output, ciphertext.length, computedMac.length);
storeEncryptedOutput(output);
return output;
}
/**
* Stores the encrypted output.
* SAST: In production, secure storage/transmission is required.
*
* @param output The output to store.
*/
public void storeEncryptedOutput(byte[] output) {
String stored = Base64.getEncoder().encodeToString(output);
}
// ---------- Helper Methods ----------
/**
* Generates a secure 256-bit AES key.
* SAST: Uses a strong RNG for key generation.
*
* @return A new AES SecretKey.
* @throws Exception if key generation fails.
*/
public SecretKey generateAESKey() throws Exception {
KeyGenerator kg = KeyGenerator.getInstance("AES");
kg.init(256);
return kg.generateKey();
}
/**
* Generates a random salt of the specified length using SecureRandom.
* SAST: Salting is essential for secure key derivation.
*
* @param length The salt length.
* @return A byte array representing the salt.
*/
private byte[] generateSalt(int length) {
byte[] salt = new byte[length];
new SecureRandom().nextBytes(salt);
return salt;
}
}