refactor to share predicates between regular expression queries

This commit is contained in:
Erik Krogh Kristensen
2020-12-15 00:18:13 +01:00
parent b2116dc5b4
commit 34dda6d38b
3 changed files with 941 additions and 891 deletions

View File

@@ -13,7 +13,7 @@
*/
import javascript
import semmle.javascript.security.performance.SuperlinearBackTracking
import semmle.javascript.security.performance.ReDoSUtil
/*
* This query implements the analysis described in the following two papers:
@@ -80,35 +80,11 @@ import semmle.javascript.security.performance.SuperlinearBackTracking
*/
/**
* A branch in a disjunction that is the root node in a literal, or a literal
* whose root node is not a disjunction.
* Holds if state `s` might be inside a backtracking repetition.
*/
class RegExpRoot extends RegExpTerm {
RegExpParent parent;
RegExpRoot() {
exists(RegExpAlt alt |
alt.isRootTerm() and
this = alt.getAChild() and
parent = alt.getParent()
)
or
this.isRootTerm() and
not this instanceof RegExpAlt and
parent = this.getParent()
}
/**
* Holds if this root term is relevant to the ReDoS analysis.
*/
predicate isRelevant() {
// there is at least one repetition
exists(MaybeBacktrackingRepetition rep | getRoot(rep) = this) and
// there are no lookbehinds
not exists(RegExpLookbehind lbh | getRoot(lbh) = this) and
// is actually used as a RegExp
isUsedAsRegExp()
}
pragma[noinline]
predicate stateInsideBacktracking(State s) {
s.getRepr().getParent*() instanceof MaybeBacktrackingRepetition
}
/**
@@ -125,503 +101,6 @@ class MaybeBacktrackingRepetition extends InfiniteRepetitionQuantifier {
}
}
/**
* A constant in a regular expression that represents valid Unicode character(s).
*/
class RegexpCharacterConstant extends RegExpConstant {
RegexpCharacterConstant() { this.isCharacter() }
}
/**
* Gets the root containing the given term, that is, the root of the literal,
* or a branch of the root disjunction.
*/
RegExpRoot getRoot(RegExpTerm term) {
result = term or
result = getRoot(term.getParent())
}
/**
* An abstract input symbol, representing a set of concrete characters.
*/
newtype TInputSymbol =
/** An input symbol corresponding to character `c`. */
Char(string c) {
c = any(RegexpCharacterConstant cc | getRoot(cc).isRelevant()).getValue().charAt(_)
} or
/**
* An input symbol representing all characters matched by
* (non-universal) character class `recc`.
*/
CharClass(RegExpTerm recc) {
getRoot(recc).isRelevant() and
(
recc instanceof RegExpCharacterClass and
not recc.(RegExpCharacterClass).isUniversalClass()
or
recc instanceof RegExpCharacterClassEscape
)
} or
/** An input symbol representing all characters matched by `.`. */
Dot() or
/** An input symbol representing all characters. */
Any() or
/** An epsilon transition in the automaton. */
Epsilon()
/**
* Holds if `a` and `b` are input symbols from the same regexp.
* (And not a `Dot()`, `Any()` or `Epsilon()`)
*/
private predicate sharesRoot(TInputSymbol a, TInputSymbol b) {
exists(RegExpRoot root |
belongsTo(a, root) and
belongsTo(b, root)
)
}
/**
* Holds if the `a` is an input symbol from a regexp that has root `root`.
*/
private predicate belongsTo(TInputSymbol a, RegExpRoot root) {
exists(RegExpTerm term | getRoot(term) = root |
a = Char(term.(RegexpCharacterConstant).getValue().charAt(_))
or
a = CharClass(term)
)
}
/**
* An abstract input symbol, representing a set of concrete characters.
*/
class InputSymbol extends TInputSymbol {
InputSymbol() { not this instanceof Epsilon }
string toString() {
this = Char(result)
or
result = any(RegExpTerm recc | this = CharClass(recc)).toString()
or
this = Dot() and result = "."
or
this = Any() and result = "[^]"
}
}
/**
* An abstract input symbol that represents a character class.
*/
abstract class CharacterClass extends InputSymbol {
/**
* Gets a character that is relevant for intersection-tests involving this
* character class.
*
* Specifically, this is any of the characters mentioned explicitly in the
* character class, offset by one if it is inverted. For character class escapes,
* the result is as if the class had been written out as a series of intervals.
*
* This set is large enough to ensure that for any two intersecting character
* classes, one contains a relevant character from the other.
*/
abstract string getARelevantChar();
/**
* Holds if this character class matches `char`.
*/
bindingset[char]
abstract predicate matches(string char);
/**
* Gets a character matched by this character class.
*/
string choose() { result = getARelevantChar() and matches(result) }
}
/**
* Provides implementations for `CharacterClass`.
*/
private module CharacterClasses {
/**
* Holds if the character class `cc` has a child (constant or range) that matches `char`.
*/
pragma[noinline]
predicate hasChildThatMatches(RegExpCharacterClass cc, string char) {
exists(CharClass(cc)) and
exists(RegExpTerm child | child = cc.getAChild() |
char = child.(RegexpCharacterConstant).getValue()
or
rangeMatchesOnLetterOrDigits(child, char)
or
not rangeMatchesOnLetterOrDigits(child, _) and
char = getARelevantChar() and
exists(string lo, string hi | child.(RegExpCharacterRange).isRange(lo, hi) |
lo <= char and
char <= hi
)
or
exists(RegExpCharacterClassEscape escape | escape = child |
escape.getValue() = escape.getValue().toLowerCase() and
classEscapeMatches(escape.getValue(), char)
or
char = getARelevantChar() and
escape.getValue() = escape.getValue().toUpperCase() and
not classEscapeMatches(escape.getValue().toLowerCase(), char)
)
)
}
/**
* Holds if `range` is a range on lower-case, upper-case, or digits, and matches `char`.
* This predicate is used to restrict the searchspace for ranges by only joining `getAnyPossiblyMatchedChar`
* on a few ranges.
*/
private predicate rangeMatchesOnLetterOrDigits(RegExpCharacterRange range, string char) {
exists(string lo, string hi |
range.isRange(lo, hi) and lo = lowercaseLetter() and hi = lowercaseLetter()
|
lo <= char and
char <= hi and
char = lowercaseLetter()
)
or
exists(string lo, string hi |
range.isRange(lo, hi) and lo = upperCaseLetter() and hi = upperCaseLetter()
|
lo <= char and
char <= hi and
char = upperCaseLetter()
)
or
exists(string lo, string hi | range.isRange(lo, hi) and lo = digit() and hi = digit() |
lo <= char and
char <= hi and
char = digit()
)
}
private string lowercaseLetter() { result = "abdcefghijklmnopqrstuvwxyz".charAt(_) }
private string upperCaseLetter() { result = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".charAt(_) }
private string digit() { result = [0 .. 9].toString() }
/**
* Gets a char that could be matched by a regular expression.
* Includes all printable ascii chars, all constants mentioned in a regexp, and all chars matches by the regexp `/\s|\d|\w/`.
*/
string getARelevantChar() {
exists(ascii(result))
or
exists(RegexpCharacterConstant c | result = c.getValue().charAt(_))
or
classEscapeMatches(_, result)
}
/**
* Gets a char that is mentioned in the character class `c`.
*/
private string getAMentionedChar(RegExpCharacterClass c) {
exists(RegExpTerm child | child = c.getAChild() |
result = child.(RegexpCharacterConstant).getValue()
or
child.(RegExpCharacterRange).isRange(result, _)
or
child.(RegExpCharacterRange).isRange(_, result)
or
exists(RegExpCharacterClassEscape escape | child = escape |
result = min(string s | classEscapeMatches(escape.getValue().toLowerCase(), s))
or
result = max(string s | classEscapeMatches(escape.getValue().toLowerCase(), s))
)
)
}
/**
* An implementation of `CharacterClass` for positive (non inverted) character classes.
*/
private class PositiveCharacterClass extends CharacterClass {
RegExpCharacterClass cc;
PositiveCharacterClass() { this = CharClass(cc) and not cc.isInverted() }
override string getARelevantChar() { result = getAMentionedChar(cc) }
override predicate matches(string char) { hasChildThatMatches(cc, char) }
}
/**
* An implementation of `CharacterClass` for inverted character classes.
*/
private class InvertedCharacterClass extends CharacterClass {
RegExpCharacterClass cc;
InvertedCharacterClass() { this = CharClass(cc) and cc.isInverted() }
override string getARelevantChar() {
result = nextChar(getAMentionedChar(cc)) or
nextChar(result) = getAMentionedChar(cc)
}
bindingset[char]
override predicate matches(string char) { not hasChildThatMatches(cc, char) }
}
/**
* Holds if the character class escape `clazz` (\d, \s, or \w) matches `char`.
*/
pragma[noinline]
private predicate classEscapeMatches(string clazz, string char) {
clazz = "d" and
char = "0123456789".charAt(_)
or
clazz = "s" and
(
char = [" ", "\t", "\r", "\n"]
or
char = getARelevantChar() and
char.regexpMatch("\\u000b|\\u000c") // \v|\f (vertical tab | form feed)
)
or
clazz = "w" and
char = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_".charAt(_)
}
/**
* An implementation of `CharacterClass` for \d, \s, and \w.
*/
private class PositiveCharacterClassEscape extends CharacterClass {
RegExpCharacterClassEscape cc;
PositiveCharacterClassEscape() { this = CharClass(cc) and cc.getValue() = ["d", "s", "w"] }
override string getARelevantChar() {
cc.getValue() = "d" and
result = ["0", "9"]
or
cc.getValue() = "s" and
result = [" "]
or
cc.getValue() = "w" and
result = ["a", "Z", "_", "0", "9"]
}
override predicate matches(string char) { classEscapeMatches(cc.getValue(), char) }
override string choose() {
cc.getValue() = "d" and
result = "9"
or
cc.getValue() = "s" and
result = [" "]
or
cc.getValue() = "w" and
result = "a"
}
}
/**
* An implementation of `CharacterClass` for \D, \S, and \W.
*/
private class NegativeCharacterClassEscape extends CharacterClass {
RegExpCharacterClassEscape cc;
NegativeCharacterClassEscape() { this = CharClass(cc) and cc.getValue() = ["D", "S", "W"] }
override string getARelevantChar() {
cc.getValue() = "D" and
result = ["a", "Z", "!"]
or
cc.getValue() = "S" and
result = ["a", "9", "!"]
or
cc.getValue() = "W" and
result = [" ", "!"]
}
bindingset[char]
override predicate matches(string char) {
not classEscapeMatches(cc.getValue().toLowerCase(), char)
}
}
}
newtype TState =
Match(RegExpTerm t, int i) {
getRoot(t).isRelevant() and
(
i = 0
or
exists(t.(RegexpCharacterConstant).getValue().charAt(i))
)
} or
Accept(RegExpRoot l) { l.isRelevant() } or
AcceptAnySuffix(RegExpRoot l) { l.isRelevant() }
/**
* A state in the NFA corresponding to a regular expression.
*
* Each regular expression literal `l` has one accepting state
* `Accept(l)`, one state that accepts all suffixes `AcceptAnySuffix(l)`,
* and a state `Match(t, i)` for every subterm `t`,
* which represents the state of the NFA before starting to
* match `t`, or the `i`th character in `t` if `t` is a constant.
*/
class State extends TState {
RegExpTerm repr;
State() {
this = Match(repr, _) or
this = Accept(repr) or
this = AcceptAnySuffix(repr)
}
string toString() {
exists(int i | this = Match(repr, i) | result = "Match(" + repr + "," + i + ")")
or
this instanceof Accept and
result = "Accept(" + repr + ")"
or
this instanceof AcceptAnySuffix and
result = "AcceptAny(" + repr + ")"
}
Location getLocation() { result = repr.getLocation() }
/**
* Gets the term represented by this state.
*/
RegExpTerm getRepr() { result = repr }
}
class EdgeLabel extends TInputSymbol {
string toString() {
this = Epsilon() and result = ""
or
exists(InputSymbol s | this = s and result = s.toString())
}
}
/**
* Gets the state before matching `t`.
*/
pragma[inline]
State before(RegExpTerm t) { result = Match(t, 0) }
/**
* Gets a state the NFA may be in after matching `t`.
*/
State after(RegExpTerm t) {
exists(RegExpAlt alt | t = alt.getAChild() | result = after(alt))
or
exists(RegExpSequence seq, int i | t = seq.getChild(i) |
result = before(seq.getChild(i + 1))
or
i + 1 = seq.getNumChild() and result = after(seq)
)
or
exists(RegExpGroup grp | t = grp.getAChild() | result = after(grp))
or
exists(RegExpStar star | t = star.getAChild() | result = before(star))
or
exists(RegExpPlus plus | t = plus.getAChild() |
result = before(plus) or
result = after(plus)
)
or
exists(RegExpOpt opt | t = opt.getAChild() | result = after(opt))
or
exists(RegExpRoot root | t = root | result = AcceptAnySuffix(root))
}
/**
* Holds if the NFA has a transition from `q1` to `q2` labelled with `lbl`.
*/
predicate delta(State q1, EdgeLabel lbl, State q2) {
exists(RegexpCharacterConstant s, int i |
q1 = Match(s, i) and
lbl = Char(s.getValue().charAt(i)) and
(
q2 = Match(s, i + 1)
or
s.getValue().length() = i + 1 and
q2 = after(s)
)
)
or
exists(RegExpDot dot | q1 = before(dot) and q2 = after(dot) |
if dot.getLiteral().isDotAll() then lbl = Any() else lbl = Dot()
)
or
exists(RegExpCharacterClass cc |
cc.isUniversalClass() and q1 = before(cc) and lbl = Any() and q2 = after(cc)
or
q1 = before(cc) and
lbl = CharClass(cc) and
q2 = after(cc)
)
or
exists(RegExpCharacterClassEscape cc |
q1 = before(cc) and
lbl = CharClass(cc) and
q2 = after(cc)
)
or
exists(RegExpAlt alt | lbl = Epsilon() | q1 = before(alt) and q2 = before(alt.getAChild()))
or
exists(RegExpSequence seq | lbl = Epsilon() | q1 = before(seq) and q2 = before(seq.getChild(0)))
or
exists(RegExpGroup grp | lbl = Epsilon() | q1 = before(grp) and q2 = before(grp.getChild(0)))
or
exists(RegExpStar star | lbl = Epsilon() |
q1 = before(star) and q2 = before(star.getChild(0))
or
q1 = before(star) and q2 = after(star)
)
or
exists(RegExpPlus plus | lbl = Epsilon() | q1 = before(plus) and q2 = before(plus.getChild(0)))
or
exists(RegExpOpt opt | lbl = Epsilon() |
q1 = before(opt) and q2 = before(opt.getChild(0))
or
q1 = before(opt) and q2 = after(opt)
)
or
exists(RegExpRoot root | q1 = AcceptAnySuffix(root) |
lbl = Any() and q2 = q1
or
lbl = Epsilon() and q2 = Accept(root)
)
or
exists(RegExpDollar dollar | q1 = before(dollar) |
lbl = Epsilon() and q2 = Accept(getRoot(dollar))
)
}
/**
* Gets a state that `q` has an epsilon transition to.
*/
State epsilonSucc(State q) { delta(q, Epsilon(), result) }
/**
* Gets a state that has an epsilon transition to `q`.
*/
State epsilonPred(State q) { q = epsilonSucc(result) }
/**
* Holds if there is a state `q` that can be reached from `q1`
* along epsilon edges, such that there is a transition from
* `q` to `q2` that consumes symbol `s`.
*/
predicate deltaClosed(State q1, InputSymbol s, State q2) { delta(epsilonSucc*(q1), s, q2) }
/**
* Holds if state `s` might be inside a backtracking repetition.
*/
pragma[noinline]
predicate stateInsideBacktracking(State s) {
s.getRepr().getParent*() instanceof MaybeBacktrackingRepetition
}
/**
* A state in the product automaton.
*
@@ -759,96 +238,6 @@ class Trace extends TTrace {
}
}
/**
* Gets the minimum char that is matched by both the character classes `c` and `d`.
*/
private string getMinOverlapBetweenCharacterClasses(CharacterClass c, CharacterClass d) {
result = min(getAOverlapBetweenCharacterClasses(c, d))
}
/**
* Gets a char that is matched by both the character classes `c` and `d`.
* And `c` and `d` is not the same character class.
*/
private string getAOverlapBetweenCharacterClasses(CharacterClass c, CharacterClass d) {
sharesRoot(c, d) and
result = [c.getARelevantChar(), d.getARelevantChar()] and
c.matches(result) and
d.matches(result) and
not c = d
}
/**
* Gets a character that is represented by both `c` and `d`.
*/
string intersect(InputSymbol c, InputSymbol d) {
c = Char(result) and
d = getAnInputSymbolMatching(result) and
(
sharesRoot(c, d)
or
d = Dot()
or
d = Any()
)
or
result = getMinOverlapBetweenCharacterClasses(c, d)
or
result = c.(CharacterClass).choose() and
(
d = c
or
d = Dot() and
not (result = "\n" or result = "\r")
or
d = Any()
)
or
c = Dot() and
(
d = Dot() and result = "a"
or
d = Any() and result = "a"
)
or
c = Any() and d = Any() and result = "a"
or
result = intersect(d, c)
}
/**
* Gets a symbol that matches `char`.
*/
bindingset[char]
InputSymbol getAnInputSymbolMatching(string char) {
result = Char(char)
or
result.(CharacterClass).matches(char)
or
result = Dot() and
not (char = "\n" or char = "\r")
or
result = Any()
}
/**
* Gets the char after `c` (from a simplified ASCII table).
*/
string nextChar(string c) { exists(int code | code = ascii(c) | code + 1 = ascii(result)) }
/**
* Gets an approximation for the ASCII code for `char`.
* Only the easily printable chars are included (so no newline, tab, null, etc).
*/
int ascii(string char) {
char =
rank[result](string c |
c =
"! \"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklmnopqrstuvwxyz{|}~"
.charAt(_)
)
}
/**
* Gets a string corresponding to the trace `t`.
*/
@@ -903,273 +292,16 @@ predicate isPumpable(State fork, string w) {
}
/**
* Predicates for constructing a prefix string that leads to a given state.
* An instantiation of `ReDoSConfiguration` for exponential backtracking.
*/
module PrefixConstruction {
/**
* Holds if `state` starts the string matched by the regular expression.
*/
private predicate isStartState(State state) {
state instanceof StateInPumpableRegexp and
(
state = Match(any(RegExpRoot r), _)
or
exists(RegExpCaret car | state = after(car))
)
}
class ExponentialReDoSConfiguration extends ReDoSConfiguration {
ExponentialReDoSConfiguration() { this = "ExponentialReDoSConfiguration" }
/**
* Holds if `state` is the textually last start state for the regular expression.
*/
private predicate lastStartState(State state) {
exists(RegExpRoot root |
state =
max(State s, Location l |
isStartState(s) and getRoot(s.getRepr()) = root and l = s.getRepr().getLocation()
|
s order by l.getStartLine(), l.getStartColumn()
)
)
}
/**
* Holds if there exists any transition (Epsilon() or other) from `a` to `b`.
*/
private predicate existsTransition(State a, State b) { delta(a, _, b) }
/**
* Gets the minimum number of transitions it takes to reach `state` from the `start` state.
*/
int prefixLength(State start, State state) =
shortestDistances(lastStartState/1, existsTransition/2)(start, state, result)
/**
* Gets the minimum number of transitions it takes to reach `state` from the start state.
*/
private int lengthFromStart(State state) { result = prefixLength(_, state) }
/**
* Gets a string for which the regular expression will reach `state`.
*
* Has at most one result for any given `state`.
* This predicate will not always have a result even if there is a ReDoS issue in
* the regular expression.
*/
string prefix(State state) {
lastStartState(state) and
result = ""
or
// the search stops past the last redos candidate state.
lengthFromStart(state) <= max(lengthFromStart(any(State s | isReDoSCandidate(s, _)))) and
exists(State prev |
// select a unique predecessor (by an arbitrary measure)
prev =
min(State s, Location loc |
lengthFromStart(s) = lengthFromStart(state) - 1 and
loc = s.getRepr().getLocation() and
delta(s, _, state)
|
s order by loc.getStartLine(), loc.getStartColumn(), loc.getEndLine(), loc.getEndColumn()
)
|
// greedy search for the shortest prefix
result = prefix(prev) and delta(prev, Epsilon(), state)
or
not delta(prev, Epsilon(), state) and
result =
prefix(prev) +
min(string c | delta(prev, any(InputSymbol symbol | c = intersect(Any(), symbol)), state))
)
}
/**
* A state within a regular expression that has a pumpable state.
*/
class StateInPumpableRegexp extends State {
pragma[noinline]
StateInPumpableRegexp() {
exists(State s | isReDoSCandidate(s, _) | getRoot(s.getRepr()) = getRoot(this.getRepr()))
}
}
}
/**
* Predicates for testing the presence of a rejecting suffix.
*
* These predicates are used to ensure that the all states reached from the fork
* by repeating `w` have a rejecting suffix.
*
* For example, a regexp like `/^(a+)+/` will accept any string as long the prefix is
* some number of `"a"`s, and it is therefore not possible to construct a rejecting suffix.
*
* A regexp like `/(a+)+$/` or `/(a+)+b/` trivially has a rejecting suffix,
* as the suffix "X" will cause both the regular expressions to be rejected.
*
* The string `w` is repeated any number of times because it needs to be
* infinitely repeatedable for the attack to work.
* For the regular expression `/((ab)+)*abab/` the accepting state is not reachable from the fork
* using epsilon transitions. But any attempt at repeating `w` will end in a state that accepts all suffixes.
*/
module SuffixConstruction {
import PrefixConstruction
/**
* Holds if all states reachable from `fork` by repeating `w`
* are likely rejectable by appending some suffix.
*/
predicate reachesOnlyRejectableSuffixes(State fork, string w) {
isReDoSCandidate(fork, w) and
forex(State next | next = process(fork, w, w.length() - 1) | isLikelyRejectable(next))
}
/**
* Holds if there likely exists a suffix starting from `s` that leads to the regular expression being rejected.
* This predicate might find impossible suffixes when searching for suffixes of length > 1, which can cause FPs.
*/
pragma[nomagic]
private predicate isLikelyRejectable(StateInPumpableRegexp s) {
// exists a reject edge with some char.
hasRejectEdge(s)
or
hasEdgeToLikelyRejectable(s)
or
// stopping here is rejection
isRejectState(s)
}
/**
* Holds if `s` is not an accept state, and there is no epsilon transition to an accept state.
*/
predicate isRejectState(StateInPumpableRegexp s) { not epsilonSucc*(s) = Accept(_) }
/**
* Holds if there is likely a non-empty suffix leading to rejection starting in `s`.
*/
predicate hasEdgeToLikelyRejectable(StateInPumpableRegexp s) {
// all edges (at least one) with some char leads to another state that is rejectable.
// the `next` states might not share a common suffix, which can cause FPs.
exists(string char | char = relevant() |
forex(State next | deltaClosedChar(s, char, next) | isLikelyRejectable(next))
)
}
/**
* Holds if there is a state `next` that can be reached from `prev`
* along epsilon edges, such that there is a transition from
* `prev` to `next` that the character symbol `char`.
*/
predicate deltaClosedChar(StateInPumpableRegexp prev, string char, StateInPumpableRegexp next) {
char = relevant() and
deltaClosed(prev, getAnInputSymbolMatching(char), next)
}
/**
* Gets a char used for finding possible suffixes.
*/
private string relevant() { result = CharacterClasses::getARelevantChar() }
/**
* Holds if there is no edge from `s` labeled `char` in our NFA.
* The NFA does not model reject states, so the above is the same as saying there is a reject edge.
*/
private predicate hasRejectEdge(State s) {
exists(string char | char = relevant() | not deltaClosedChar(s, char, _))
}
/**
* Gets a state that can be reached from pumpable `fork` consuming all
* chars in `w` any number of times followed by the first `i+1` characters of `w`.
*/
private State process(State fork, string w, int i) {
isReDoSCandidate(fork, w) and
exists(State prev |
i = 0 and prev = fork
or
prev = process(fork, w, i - 1)
or
// repeat until fixpoint
i = 0 and
prev = process(fork, w, w.length() - 1)
|
deltaClosed(prev, getAnInputSymbolMatching(w.charAt(i)), result)
)
}
}
/**
* Holds if `term` may cause exponential backtracking on strings containing many repetitions of `pump`.
* Gets the minimum possible string that causes exponential backtracking.
*/
predicate isReDoSAttackable(RegExpTerm term, string pump, State s) {
exists(int i, string c | s = Match(term, i) |
c =
min(string w |
isReDoSCandidate(s, w) and
SuffixConstruction::reachesOnlyRejectableSuffixes(s, w)
|
w order by w.length(), w
) and
pump = escape(rotate(c, i))
)
}
/**
* Holds if repeating `pump' starting at `state` is a candidate for causing exponential backtracking.
* No check whether a rejected suffix exists has been made.
*/
predicate isReDoSCandidate(State state, string pump) {
isPumpable(state, pump) and
(
not isPumpable(epsilonSucc+(state), _)
or
epsilonSucc+(state) = state and
state =
max(State s, Location l |
s = epsilonSucc+(state) and
l = s.getRepr().getLocation() and
isPumpable(s, _) and
s.getRepr() instanceof InfiniteRepetitionQuantifier
|
s order by l.getStartLine(), l.getStartColumn(), l.getEndColumn(), l.getEndLine()
)
)
}
/**
* Gets the result of backslash-escaping newlines, carriage-returns and
* backslashes in `s`.
*/
bindingset[s]
string escape(string s) {
result =
s.replaceAll("\\", "\\\\")
.replaceAll("\n", "\\n")
.replaceAll("\r", "\\r")
.replaceAll("\t", "\\t")
}
/**
* Gets `str` with the last `i` characters moved to the front.
*
* We use this to adjust the pump string to match with the beginning of
* a RegExpTerm, so it doesn't start in the middle of a constant.
*/
bindingset[str, i]
string rotate(string str, int i) {
result = str.suffix(str.length() - i) + str.prefix(str.length() - i)
override predicate isReDoSCandidate(State state, string pump) { isPumpable(state, pump) }
}
from RegExpTerm t, string pump, State s, string prefixMsg
where
isReDoSAttackable(t, pump, s) and
(
prefixMsg = "starting with '" + escape(PrefixConstruction::prefix(s)) + "' and " and
not PrefixConstruction::prefix(s) = ""
or
PrefixConstruction::prefix(s) = "" and prefixMsg = ""
or
not exists(PrefixConstruction::prefix(s)) and prefixMsg = ""
)
where hasReDoSResult(t, pump, s, prefixMsg)
select t,
"This part of the regular expression may cause exponential backtracking on strings " + prefixMsg +
"containing many repetitions of '" + pump + "'."